The Origin of Autophagosomes: The Beginning of an End

  • Susana Abreu
  • Jana Sanchez-Wandelmer
  • Fulvio Reggiori
Part of the Current Cancer Research book series (CUCR, volume 8)


Autophagy is a catabolic intracellular process highly conserved among eukaryotes. During this process cytoplasmic material and organelles are surrounded and enclosed by double-membranes, forming vesicles called autophagosomes. Fusion of the autophagosomes with the lysosome/vacuole permits to expose the inner membrane compartment to lytic enzymes allowing the degradation of the engulfed cellular components. Autophagy has been shown to be an essential process for the cell survival in a multitude of situations. At a basal level, this catabolic pathway allows the removal of protein aggregates and/or damaged organelles to preserve the cell homeostasis. Under diverse pathological and physiological situations, the cell responds by increasing the levels of autophagy activity to cope with developmental adaptations or stresses. As a result, autophagy onset is observed in numerous diseases including neurodegenerative disorders, cancer, and myopathies. The cellular roles of autophagy as well as the function of the autophagy related (Atg) proteins have been extensively studied in the last decade and significant advances have been achieved. However, a multitude of questions still have to be answered before understanding the regulation and mechanism of autophagy in its full complexity. One of the enigmas in the field of autophagy is the origin of the lipid bilayers composing autophagosomes. While a considerable effort has been invested in solving this question during the past years, a consensus has not been reached yet. In this chapter, we discuss the studies, large part performed in yeast and mammalian cells, which propose several organelles of the eukaryotic cell including the endoplasmic reticulum (ER), Golgi, mitochondria, endosomes, and plasma membrane, as the source of autophagosomal membranes.


Autophagy Atg proteins Phagophore assembly site Phagophore Autophagosome Endoplasmic reticulum Golgi Endosomes Mitochondria Plasma membrane Vesicular transport Organelle biogenesis 



The authors thank Rene Scriwanek for the realization of the figures. F.R. is supported by the ECHO (700.59.003), ALW Open Program (821.02.017), and DFG-NWO cooperation (DN82-303) grants.


  1. Arstila AU, Trump BF (1968) Studies on cellular autophagocytosis. The formation of autophagic vacuoles in the liver after glucagon administration. Am J Pathol 53(5):687–733PubMedGoogle Scholar
  2. Axe EL et al (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182(4):685–701PubMedCrossRefGoogle Scholar
  3. de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456(7222):605–610PubMedCrossRefGoogle Scholar
  4. Dunn WA Jr (1990) Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol 110(6):1923–1933PubMedCrossRefGoogle Scholar
  5. Dusetti NJ et al (2002) Cloning and expression of the rat vacuole membrane protein 1 (VMP1), a new gene activated in pancreas with acute pancreatitis, which promotes vacuole formation. Biochem Biophys Res Commun 290(2):641–649PubMedCrossRefGoogle Scholar
  6. Furuno K, Ishikawa T, Kato K (1982) Isolation and characterization of autolysosomes which appeared in rat liver after leupeptin treatment. J Biochem 91(6):1943–1950PubMedGoogle Scholar
  7. Geng J et al (2010) Post-Golgi Sec proteins are required for autophagy in Saccharomyces cerevisiae. Mol Biol Cell 21(13):2257–2269PubMedCrossRefGoogle Scholar
  8. Gillooly DJ et al (2000) Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J 19(17):4577–4588PubMedCrossRefGoogle Scholar
  9. Hailey DW et al (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141(4):656–667PubMedCrossRefGoogle Scholar
  10. Hansen TE, Johansen T (2011) Following autophagy step by step. BMC Biol 9:39PubMedCrossRefGoogle Scholar
  11. Hayashi-Nishino M et al (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11(12):1433–1437PubMedCrossRefGoogle Scholar
  12. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93PubMedCrossRefGoogle Scholar
  13. Huang J, Klionsky DJ (2007) Autophagy and human disease. Cell Cycle 6(15):1837–1849PubMedCrossRefGoogle Scholar
  14. Ishihara N et al (2001) Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol Biol Cell 12(11):3690–3702PubMedGoogle Scholar
  15. Itakura E, Mizushima N (2010) Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6(6):764–776PubMedCrossRefGoogle Scholar
  16. Itakura E et al (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19(12):5360–5372PubMedCrossRefGoogle Scholar
  17. Itakura E et al (2012) Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J Cell Sci 125(Pt 6):1488–1499PubMedCrossRefGoogle Scholar
  18. Itoh T et al (2008) Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol Biol Cell 19(7):2916–2925PubMedCrossRefGoogle Scholar
  19. Itoh T et al (2011) OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation. J Cell Biol 192(5):839–853PubMedCrossRefGoogle Scholar
  20. Juhasz G, Neufeld TP (2006) Autophagy: a forty-year search for a missing membrane source. PLoS Biol 4(2):e36PubMedCrossRefGoogle Scholar
  21. Kageyama S et al (2011) The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella. Mol Biol Cell 22(13):2290–2300PubMedCrossRefGoogle Scholar
  22. Kim S, Naylor SA, DiAntonio A (2012) Drosophila Golgi membrane protein Ema promotes autophagosomal growth and function. Proc Natl Acad Sci USA 109(18):E1072–E1081PubMedCrossRefGoogle Scholar
  23. Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118(Pt 1):7–18PubMedCrossRefGoogle Scholar
  24. Kominami E et al (1983) Sequestration of cytoplasmic enzymes in an autophagic vacuole-­lysosomal system induced by injection of leupeptin. J Biol Chem 258(10):6093–6100PubMedGoogle Scholar
  25. Kornmann B et al (2009) An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325(5939):477–481PubMedCrossRefGoogle Scholar
  26. Liou W et al (1997) The autophagic and endocytic pathways converge at the nascent autophagic vacuoles. J Cell Biol 136(1):61–70PubMedCrossRefGoogle Scholar
  27. Locke M, Collins JV (1965) The structure and formation of protein granules in the fat body of an insect. J Cell Biol 26(3):857–884PubMedCrossRefGoogle Scholar
  28. Longatti A et al (2012) TBC1D14 regulates autophagosome formation via Rab11- and ULK1-­positive recycling endosomes. J Cell Biol 197(5):659–675PubMedCrossRefGoogle Scholar
  29. Lum JJ, DeBerardinis RJ, Thompson CB (2005) Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol 6(6):439–448PubMedCrossRefGoogle Scholar
  30. Lynch-Day MA et al (2010) Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy. Proc Natl Acad Sci USA 107(17):7811–7816PubMedCrossRefGoogle Scholar
  31. Mari M et al (2010) An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol 190(6):1005–1022PubMedCrossRefGoogle Scholar
  32. Mari M, Tooze SA, Reggiori F (2011) The puzzling origin of the autophagosomal membrane. F1000 Biol Rep 3:25PubMedCrossRefGoogle Scholar
  33. Matsunaga K et al (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11(4):385–396PubMedCrossRefGoogle Scholar
  34. Matsunaga K et al (2010) Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J Cell Biol 190(4):511–521PubMedCrossRefGoogle Scholar
  35. Mizushima N et al (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152(4):657–668PubMedCrossRefGoogle Scholar
  36. Moreau K et al (2011) Autophagosome precursor maturation requires homotypic fusion. Cell 146(2):303–317PubMedCrossRefGoogle Scholar
  37. Moreau K et al (2012) Arf6 promotes autophagosome formation via effects on phosphatidylinositol 4,5-bisphosphate and phospholipase D. J Cell Biol 196(4):483–496PubMedCrossRefGoogle Scholar
  38. Munafo DB, Colombo MI (2002) Induction of autophagy causes dramatic changes in the subcellular distribution of GFP-Rab24. Traffic 3(7):472–482PubMedCrossRefGoogle Scholar
  39. Nakagawa I et al (2004) Autophagy defends cells against invading group A Streptococcus. Science 306(5698):1037–1040PubMedCrossRefGoogle Scholar
  40. Nakatogawa H, Ichimura Y, Ohsumi Y (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130(1):165–178PubMedCrossRefGoogle Scholar
  41. Nakatogawa H et al (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10(7):458–467PubMedCrossRefGoogle Scholar
  42. Noda T et al (2000) Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol 148(3):465–480PubMedCrossRefGoogle Scholar
  43. Noda T et al (2012) Three-axis model for Atg recruitment in autophagy against Salmonella. Int J Cell Biol 2012:389562PubMedGoogle Scholar
  44. Ohashi Y, Munro S (2010) Membrane delivery to the yeast autophagosome from the Golgi-­endosomal system. Mol Biol Cell 21(22):3998–4008PubMedCrossRefGoogle Scholar
  45. Orsi A et al (2012) Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol Biol Cell 23(10):1860–1873PubMedCrossRefGoogle Scholar
  46. Polson HE et al (2010) Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6(4):506–522Google Scholar
  47. Ravikumar B et al (2008) Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci 121(Pt 10):1649–1660PubMedCrossRefGoogle Scholar
  48. Ravikumar B et al (2010) Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol 12(8):747–757PubMedCrossRefGoogle Scholar
  49. Reggiori F (2006) 1. Membrane origin for autophagy. Curr Top Dev Biol 74:1–30PubMedCrossRefGoogle Scholar
  50. Reggiori F, Tooze SA (2009) The EmERgence of autophagosomes. Dev Cell 17(6):747–748PubMedCrossRefGoogle Scholar
  51. Reggiori F et al (2004a) Early stages of the secretory pathway, but not endosomes, are required for Cvt vesicle and autophagosome assembly in Saccharomyces cerevisiae. Mol Biol Cell 15(5):2189–2204PubMedCrossRefGoogle Scholar
  52. Reggiori F et al (2004b) The Atg1–Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell 6(1):79–90PubMedCrossRefGoogle Scholar
  53. Reggiori F et al (2012) Autophagy: more than a nonselective pathway. Int J Cell Biol 2012:219625PubMedGoogle Scholar
  54. Rich KA, Burkett C, Webster P (2003) Cytoplasmic bacteria can be targets for autophagy. Cell Microbiol 5(7):455–468PubMedCrossRefGoogle Scholar
  55. Rubinsztein DC et al (2005) Dyneins, autophagy, aggregation and neurodegeneration. Autophagy 1(3):177–178PubMedCrossRefGoogle Scholar
  56. Stone SJ, Vance JE (2000) Phosphatidylserine synthase-1 and -2 are localized to mitochondria-­associated membranes. J Biol Chem 275(44):34534–34540PubMedCrossRefGoogle Scholar
  57. Suhy DA, Giddings TH Jr, Kirkegaard K (2000) Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. J Virol 74(19):8953–8965PubMedCrossRefGoogle Scholar
  58. Suzuki K et al (2001) The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20(21):5971–5981PubMedCrossRefGoogle Scholar
  59. Suzuki K et al (2007) Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12(2):209–218PubMedCrossRefGoogle Scholar
  60. Takahashi Y et al (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9(10):1142–1151PubMedCrossRefGoogle Scholar
  61. Takahashi Y et al (2011) Bif-1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy. Autophagy 7(1):61–73PubMedCrossRefGoogle Scholar
  62. Tian Y et al (2010) C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141(6):1042–1055PubMedCrossRefGoogle Scholar
  63. Tooze SA (2010) The role of membrane proteins in mammalian autophagy. Semin Cell Dev Biol 21(7):677–682PubMedCrossRefGoogle Scholar
  64. Tooze SA, Yoshimori T (2010) The origin of the autophagosomal membrane. Nat Cell Biol 12(9):831–835PubMedCrossRefGoogle Scholar
  65. Tooze J et al (1990) In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome. J Cell Biol 111(2):329–345PubMedCrossRefGoogle Scholar
  66. Ueno T, Muno D, Kominami E (1991) Membrane markers of endoplasmic reticulum preserved in autophagic vacuolar membranes isolated from leupeptin-administered rat liver. J Biol Chem 266(28):18995–18999PubMedGoogle Scholar
  67. van der Vaart A, Reggiori F (2010) The Golgi complex as a source for yeast autophagosomal membranes. Autophagy 6(6):800–801PubMedCrossRefGoogle Scholar
  68. Vance JE (2008) Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. J Lipid Res 49(7):1377–1387PubMedCrossRefGoogle Scholar
  69. Yamamoto A, Masaki R, Tashiro Y (1990) Characterization of the isolation membranes and the limiting membranes of autophagosomes in rat hepatocytes by lectin cytochemistry. J Histochem Cytochem 38(4):573–580PubMedCrossRefGoogle Scholar
  70. Yamamoto H et al (2012) Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol 198(2):219–233PubMedCrossRefGoogle Scholar
  71. Yla-Anttila P et al (2009) 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5(8):1180–1185PubMedCrossRefGoogle Scholar
  72. Yokota S (1993) Formation of autophagosomes during degradation of excess peroxisomes induced by administration of dioctyl phthalate. Eur J Cell Biol 61(1):67–80PubMedGoogle Scholar
  73. Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12(Suppl 2):1542–1552PubMedCrossRefGoogle Scholar
  74. Young AR et al (2006) Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 119(Pt 18):3888–3900PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Susana Abreu
    • 1
  • Jana Sanchez-Wandelmer
    • 1
  • Fulvio Reggiori
    • 1
  1. 1.Department of Cell Biology and Institute of BiomembranesUniversity Medical Centre UtrechtUtrechtThe Netherlands

Personalised recommendations