Skip to main content

Chromosome Architecture Studied by High-Resolution FISH Banding in Three Dimensionally Preserved Human Interphase Nuclei

  • Chapter
  • First Online:
Book cover Human Interphase Chromosomes

Abstract

The impact of chromosome architecture on the formation of chromosome aberrations is a recent finding of interphase-directed molecular cytogenetic studies. Until recent years, biomedical research of interphase chromosomes in their integrity was hindered by technical limitations. The introduction of three-dimensional suspension-based fluorescence in situ hybridization (S-FISH) in combination with microdissection-based engineered DNA probes and fluorescence multicolor banding (MCB) allowed studying interphase chromosome organization, numbers, and rearrangements in different kinds of cells. Such studies have already provided comprehensive information on the interphase architecture of normal human sperm, as well as first insights into the influence of chromosomal rearrangements on the 3D structure of sperm nuclei. Also, the influence of additional chromosomal fragments present in a nucleus was successfully visualized by S-FISH. Finally, S-FISH supported the idea that disease-specific chromosomal translocations could be the result of tissue-specific genomic organization. Overall, S-FISH combined with MCB, but also with other DNA probes, is a tool with high potential to resolve the influence of chromosomal imbalances or rearrangements on the interphase architecture, the latter being possibly a part of epigenetic cell regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bhatt S, Moradkhani K, Mrasek K, Puechberty J, Manvelyan M, Hunstig F, Lefort G, Weise A, Lespinasse J, Sarda P, Liehr T, Hamamah S, Pellestor F (2009) Breakpoint mapping and complete analysis of meiotic segregation patterns in three men heterozygous for paracentric inversions. Eur J Hum Genet 17:44–50

    Article  PubMed  CAS  Google Scholar 

  • Bickmore WA, Teague P (2002) Influences of chromosome size, gene density and nuclear position on the frequency of constitutional translocations in the human population. Chromosome Res 10:707–715

    Article  PubMed  CAS  Google Scholar 

  • Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, Muller S, Eils R, Cremer C, Speicher MR, Cremer T (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3:e157

    Article  PubMed  Google Scholar 

  • Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4:e138

    Article  PubMed  Google Scholar 

  • Brianna Caddle L, Grant JL, Szatkiewicz J, van Hase J, Shirley BJ, Bewersdorf J, Cremer C, Arneodo A, Khalil A, Mills KD (2007) Chromosome neighborhood composition determines translocation outcomes after exposure to high-dose radiation in primary cells. Chromosome Res 15:1061–1073

    Article  PubMed  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  PubMed  CAS  Google Scholar 

  • Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 45:1119–1131

    Article  Google Scholar 

  • Gandhi MS, Stringer JR, Nikiforova M, Medvedovic M, Nikiforov YE (2009) Gene position within chromosome territories correlates with their involvement in distinct rearrangement types in thyroid cancer cells. Genes Chromosomes Cancer 48:222–228

    Article  PubMed  CAS  Google Scholar 

  • Grasser F, Neusser M, Fiegler H, Thormeyer T, Cremer M, Carter NP, Cremer T, Miller S (2008) Replication-timing correlated spatial chromatin arrangements in cancer and in primate interphase nuclei. J Cell Sci 121:1876–1886

    Article  PubMed  CAS  Google Scholar 

  • Hunstig F, Manvelyan M, Bhatt S, Steinhaeuser U, Liehr T (2009) Three-dimensional interphase analysis enabled by suspension FISH. In: Liehr T (ed) Fluorescence in situ hybridization (FISH)—application guide, 1st edn. Springer, Berlin

    Google Scholar 

  • Klein E, Manvelyan M, Simonyan I, Hamid AB, Santos Guilherme R, Liehr T, Karamysheva T (2012) Centromeric association of small supernumerary marker chromosomes with their sister-chromosomes detected by three dimensional molecular cytogenetics. Mol Cytogenet 5:15

    Article  PubMed  Google Scholar 

  • Lemke J, Claussen J, Michel S, Chudoba I, Mühlig P, Westermann M, Sperling K, Rubtsov N, Grummt UW, Ullmann P, Kromeyer-Hauschild K, Liehr T, Claussen U (2002) The DNA-based structure of human chromosome 5 in interphase. Am J Hum Genet 71:1051–1059

    Article  PubMed  CAS  Google Scholar 

  • Liehr T, Weise A (2007) Frequency of small supernumerary marker chromosomes in prenatal, newborn, developmentally retarded and infertility diagnostics. Int J Mol Med 19:719–731

    PubMed  Google Scholar 

  • Liehr T, Heller A, Starke H, Claussen U (2002) FISH banding methods: applications in research and diagnostics. Expert Rev Mol Diagn 2:217–225

    Article  PubMed  CAS  Google Scholar 

  • Liehr T, Starke H, Weise A, Lehrer H, Claussen U (2004a) Multicolor FISH probe sets and their applications. Histol Histopathol 19:229–237

    PubMed  CAS  Google Scholar 

  • Liehr T, Claussen U, Starke H (2004b) Small supernumerary marker chromosomes (sSMC) in humans. Cytogenet Genome Res 107:55–67

    Article  PubMed  CAS  Google Scholar 

  • Liehr T, Starke H, Heller A, Kosyakova N, Mrasek K, Gross M, Karst C, Steinhaeuser U, Hunstig F, Fickelscher I, Kuechler A, Trifonov V, Romanenko SA, Weise A (2006) Multicolor fluorescence in situ hybridization (FISH) applied to FISH-banding. Cytogenet Genome Res 114:240–244

    Article  PubMed  CAS  Google Scholar 

  • Manvelyan M, Hunstig F, Mrasek K, Bhatt S, Pellestor F, Weise A, Liehr T (2008a) Position of chromosomes 18, 19, 21 and 22 in 3D-preserved interphase nuclei of human and gorilla and white hand gibbon. Mol Cytogenet 1:9

    Article  PubMed  Google Scholar 

  • Manvelyan M, Hunstig F, Bhatt S, Mrasek K, Pellestor F, Weise A, Simonyan I, Aroutiounian R, Liehr T (2008b) Chromosome distribution in human sperm—a 3D multicolor banding-study. Mol Cytogenet 1:25

    Article  PubMed  Google Scholar 

  • Manvelyan M, Kempf P, Weise A, Mrasek K, Heller A, Lier A, Höffken K, Fricke HJ, Sayer HG, Liehr T, Mkrtchyan H (2009) Preferred co-localization of chromosome 8 and 21 in myeloid bone marrow cells detected by three dimensional molecular cytogenetics. Int J Mol Med 24:335–341

    PubMed  CAS  Google Scholar 

  • Meaburn KJ, Misteli T, Soutoglou E (2007) Spatial genome organization in the formation of chromosomal translocations. Semin Cancer Biol 17:80–90

    Article  PubMed  CAS  Google Scholar 

  • Roix JJ, McQueen PG, Munson PJ, Parada LA, Misteli T (2003) Spatial proximity of translocation-prone gene loci in human lymphomas. Nat Genet 34:287–291

    Article  PubMed  CAS  Google Scholar 

  • Steinhaeuser U, Starke H, Nietzel A, Lindenau J, Ullmann P, Claussen U, Liehr T (2002) Suspension (S)-FISH, a new technique for interphase nuclei. J Histochem Cytochem 50:1697–1698

    Article  PubMed  CAS  Google Scholar 

  • Sun HB, Shen J, Yokota H (2000) Size-dependent positioning of human chromosomes in interphase nuclei. Biophys J 79:184–190

    Article  PubMed  CAS  Google Scholar 

  • Weise A, Starke H, Heller A, Claussen U, Liehr T (2002) Evidence for interphase DNA decondensation transverse to the chromosome axis: a multicolor banding analysis. Int J Mol Med 9:359–361

    PubMed  CAS  Google Scholar 

  • Weise A, Mrasek K, Fickelscher I, Claussen U, Cheung SW, Cai WW, Liehr T, Kosyakova N (2008) Molecular definition of high-resolution multicolor banding probes: first within the human DNA sequence anchored FISH banding probe set. J Histochem Cytochem 56:487–493

    Article  PubMed  CAS  Google Scholar 

  • Williams RE, Fisher AG (2003) Chromosomes, positions please! Nat Cell Biol 5:388–390

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

 Work supported in part by the DFG (436 ARM 17/11/06, LI 820/15-1, LI 820/21-1, LI 820/24-1, LI 820/33-1), DAAD (A/07/04616), Stefan-Morsch-Stiftung, Monika Kutzner Stiftung, Else Kröner-Fresenius-Stiftung (2011_A42).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Liehr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liehr, T., Mkrtchyan, H., Manvelyan, M., Karamysheva, T., Klein, E., Bhatt, S. (2013). Chromosome Architecture Studied by High-Resolution FISH Banding in Three Dimensionally Preserved Human Interphase Nuclei. In: Yurov, Y., Vorsanova, S., Iourov, I. (eds) Human Interphase Chromosomes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6558-4_10

Download citation

Publish with us

Policies and ethics