Skip to main content

Epigenetic Alterations in Pancreatic Cancer

  • Chapter
  • First Online:
Molecular Genetics of Pancreatic Cancer

Abstract

Pancreatic cancer remains one of the deadliest malignancies. In addition to genetic alterations a wide variety of epigenetic aberrations have been identified in pancreatic neoplasms some of which are thought to play an important role in neoplastic development and maintenance. Newer technologies are helping to better characterize cancer epigenomes. Efforts are underway to identify epigenetic alterations that would make optimal diagnostic markers and therapeutic targets. In this chapter, we discuss recent findings in the field of pancreatic cancer epigenetics and the implications they hold for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbosh PH et al (2006) Dominant-negative histone H3 lysine 27 mutant derepresses silenced tumor suppressor genes and reverses the drug-resistant phenotype in cancer cells. Cancer Res 66(11):5582–5591

    PubMed  CAS  Google Scholar 

  • Abe T et al (2005) Upregulation of BNIP3 by 5-aza-2′-deoxycytidine sensitizes pancreatic cancer cells to hypoxia-mediated cell death. J Gastroenterol 40(5):504–510

    PubMed  CAS  Google Scholar 

  • Abele R et al (1987) The EORTC Early Clinical Trials Cooperative Group experience with 5-aza-2'-deoxycytidine (NSC 127716) in patients with colo-rectal, head and neck, renal carcinomas and malignant melanomas. Eur J Cancer Clin Oncol 23(12):1921–1924

    PubMed  CAS  Google Scholar 

  • Aghdassi A et al (2012) Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer. Gut 61(3):439–448

    PubMed  CAS  Google Scholar 

  • Akada M et al (2005) Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer. Clin Cancer Res 11(8):3094–3101

    PubMed  CAS  Google Scholar 

  • Angst E et al (2010) Epigenetic regulation affects N-myc downstream-regulated gene 1 expression indirectly in pancreatic cancer cells. Pancreas 39(5):675–679

    PubMed  CAS  Google Scholar 

  • Arnold NB et al (2007) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces growth inhibition and enhances gemcitabine-induced cell death in pancreatic cancer. Clin Cancer Res 13(1):18–26

    PubMed  CAS  Google Scholar 

  • Azmi AS et al (2011) Aberrant epigenetic grooming of miRNAs in pancreatic cancer: a systems biology perspective. Epigenomics 3(6):747–759

    PubMed  CAS  Google Scholar 

  • Ball MP et al (2009) Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol 27(4):361–368

    PubMed  CAS  Google Scholar 

  • Bao B et al (2012) Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res 72(1):335–345

    PubMed  CAS  Google Scholar 

  • Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer 11(10):726–734

    PubMed  CAS  Google Scholar 

  • Bestor T et al (1988) Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol 203(4):971–983

    PubMed  CAS  Google Scholar 

  • Biankin AV et al (2012) Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491(7424):399–405

    PubMed  CAS  Google Scholar 

  • Blumenschein GR Jr et al (2008) Phase II trial of the histone deacetylase inhibitor vorinostat (Zolinza, suberoylanilide hydroxamic acid, SAHA) in patients with recurrent and/or metastatic head and neck cancer. Invest New Drugs 26(1):81–87

    PubMed  CAS  Google Scholar 

  • Brune K et al (2006) Multifocal neoplastic precursor lesions associated with lobular atrophy of the pancreas in patients having a strong family history of pancreatic cancer. Am J Surg Pathol 30(9):1067–1076

    PubMed  Google Scholar 

  • Byrd JC et al (2005) A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood 105(3):959–967

    PubMed  CAS  Google Scholar 

  • Chan TA et al (2008) Convergence of mutation and epigenetic alterations identifies common genes in cancer that predict for poor prognosis. PLoS Med 5(5):e114

    PubMed  Google Scholar 

  • Chen RZ et al (1998) DNA hypomethylation leads to elevated mutation rates. Nature 395(6697): 89–93

    PubMed  CAS  Google Scholar 

  • Chien CH et al (2011) Identifying transcriptional start sites of human microRNAs based on high-­throughput sequencing data. Nucleic Acids Res 39(21):9345–9356

    PubMed  CAS  Google Scholar 

  • Choi JH et al (2007) Site-specific methylation of CpG nucleotides in the hTERT promoter region can control the expression of hTERT during malignant progression of colorectal carcinoma. Biochem Biophys Res Commun 361(3):615–620

    PubMed  CAS  Google Scholar 

  • Clark SJ (2007) Action at a distance: epigenetic silencing of large chromosomal regions in carcinogenesis. Hum Mol Genet 16(1):R88–R95

    PubMed  CAS  Google Scholar 

  • Cui K et al (2009) Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4(1):80–93

    PubMed  CAS  Google Scholar 

  • Daniel M, Peek GW, Tollefsbol TO (2012) Regulation of the human catalytic subunit of telomerase (hTERT). Gene 498(2):135–146

    PubMed  CAS  Google Scholar 

  • De Carvalho DD et al (2012) DNA methylation screening identifies driver epigenetic events of cancer cell survival. Cancer Cell 21(5):655–667

    PubMed  Google Scholar 

  • de Wilde RF et al (2012) Loss of ATRX or DAXX expression and concomitant acquisition of the alternative lengthening of telomeres phenotype are late events in a small subset of MEN-1 syndrome pancreatic neuroendocrine tumors. Mod Pathol 25(7):1033–1039

    PubMed  Google Scholar 

  • Dejeux E et al (2009) Hypermethylation of the IGF2 differentially methylated region 2 is a specific event in insulinomas leading to loss-of-imprinting and overexpression. Endocr Relat Cancer 16(3):939–952

    PubMed  CAS  Google Scholar 

  • Dessain SK et al (2000) Methylation of the human telomerase gene CpG island. Cancer Res 60(3):537–541

    PubMed  CAS  Google Scholar 

  • Devereux TR et al (1999) DNA methylation analysis of the promoter region of the human telomerase reverse transcriptase (hTERT) gene. Cancer Res 59(24):6087–6090

    PubMed  CAS  Google Scholar 

  • Dialynas GK, Vitalini MW, Wallrath LL (2008) Linking Heterochromatin Protein 1 (HP1) to cancer progression. Mutat Res 647(1–2):13–20

    PubMed  CAS  Google Scholar 

  • DiGiuseppe JA et al (1994) Detection of K-ras mutations in mucinous pancreatic duct hyperplasia from a patient with a family history of pancreatic carcinoma. Am J Pathol 144(5):889–895

    PubMed  CAS  Google Scholar 

  • Dodge JE et al (2002) De novo methylation of MMLV provirus in embryonic stem cells: CpG versus non-CpG methylation. Gene 289(1–2):41–48

    PubMed  CAS  Google Scholar 

  • Easwaran HP et al (2010) Aberrant silencing of cancer-related genes by CpG hypermethylation occurs independently of their spatial organization in the nucleus. Cancer Res 70(20):8015–8024

    PubMed  CAS  Google Scholar 

  • Eden S et al (1998) DNA methylation models histone acetylation. Nature 394(6696):842

    PubMed  CAS  Google Scholar 

  • Ellis L et al (2008) Histone deacetylase inhibitor panobinostat induces clinical responses with associated alterations in gene expression profiles in cutaneous T-cell lymphoma. Clin Cancer Res 14(14):4500–4510

    PubMed  CAS  Google Scholar 

  • Esteller M (2007) Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet 16(1):R50–R59

    PubMed  CAS  Google Scholar 

  • Federico A et al (2009) Chromobox protein homologue 7 protein, with decreased expression in human carcinomas, positively regulates E-cadherin expression by interacting with the histone deacetylase 2 protein. Cancer Res 69(17):7079–7087 Fitzgerald M, Oshiro M et al (2003) Human pancreatic carcinoma cells activate maspin expression through loss of epigenetic control. Neoplasia 5(5):427–436

    PubMed  CAS  Google Scholar 

  • Fujii S et al (2008) Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. J Biol Chem 283(25):17324–17332

    PubMed  CAS  Google Scholar 

  • Fukushima N et al (2003) Aberrant methylation of suppressor of cytokine signalling-1 (SOCS-1) gene in pancreatic ductal neoplasms. Br J Cancer 89(2):338–343

    PubMed  CAS  Google Scholar 

  • Gao J et al (2010) Methylation of the SPARC gene promoter and its clinical implication in pancreatic cancer. J Exp Clin Cancer Res 29:28

    PubMed  CAS  Google Scholar 

  • Garcia-Manero G et al (2008) Phase 1 study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia. Blood 112(4):981–989

    PubMed  CAS  Google Scholar 

  • Garcia-Morales P et al (2005) Histone deacetylase inhibitors induced caspase-independent apoptosis in human pancreatic adenocarcinoma cell lines. Mol Cancer Ther 4(8):1222–1230

    PubMed  CAS  Google Scholar 

  • Gaudet F et al (2003) Induction of tumors in mice by genomic hypomethylation. Science 300(5618):489–492

    PubMed  CAS  Google Scholar 

  • Giatromanolaki A et al (2004) BNIP3 expression is linked with hypoxia-regulated protein expression and with poor prognosis in non-small cell lung cancer. Clin Cancer Res 10(16):5566–5571

    PubMed  CAS  Google Scholar 

  • Grady WM et al (2008) Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene 27(27):3880–3888

    PubMed  CAS  Google Scholar 

  • Graff JR et al (2000) Methylation patterns of the E-cadherin 5′ CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. J Biol Chem 275(4):2727–2732

    PubMed  CAS  Google Scholar 

  • Hahn MA et al (2011) Relationship between gene body DNA methylation and intragenic H3K9me3 and H3K36me3 chromatin marks. PLoS One 6(4):e18844

    PubMed  CAS  Google Scholar 

  • Hashimshony T et al (2003) The role of DNA methylation in setting up chromatin structure during development. Nat Genet 34(2):187–192

    PubMed  CAS  Google Scholar 

  • He S et al (2011) Expression of DNMT1 and DNMT3a are regulated by GLI1 in human pancreatic cancer. PLoS One 6(11):e27684

    PubMed  CAS  Google Scholar 

  • Hellman A, Chess A (2007) Gene body-specific methylation on the active X chromosome. Science 315(5815):1141–1143

    PubMed  CAS  Google Scholar 

  • Hong SM et al (2011) Loss of E-cadherin expression and outcome among patients with resectable pancreatic adenocarcinomas. Mod Pathol 24(9):1237–1247

    PubMed  Google Scholar 

  • Hong SM et al (2012) Genome-wide CpG island profiling of intraductal papillary mucinous neoplasms of the pancreas. Clin Cancer Res 18(3):700–712 Iacobuzio-Donahue CA, Maitra A et al (2003) Exploration of global gene expression ­patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol 162(4):1151–1162

    PubMed  CAS  Google Scholar 

  • Issa JP, Kantarjian HM (2009) Targeting DNA methylation. Clin Cancer Res 15(12):3938–3946

    PubMed  CAS  Google Scholar 

  • Jansen M et al (2002) Aberrant methylation of the 5′ CpG island of TSLC1 is common in pancreatic ductal adenocarcinoma and is first manifest in high-grade PanlNs. Cancer Biol Ther 1(3):293–296

    PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080

    PubMed  CAS  Google Scholar 

  • Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128(4):683–692

    PubMed  CAS  Google Scholar 

  • Jones PL et al (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19(2):187–191

    PubMed  CAS  Google Scholar 

  • Jones S et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897):1801–1806

    PubMed  CAS  Google Scholar 

  • Kanda M et al (2012) Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology 142(4):730.e9–733.e9

    Google Scholar 

  • Karamitopoulou E et al (2010) Loss of the CBX7 protein expression correlates with a more aggressive phenotype in pancreatic cancer. Eur J Cancer 46(8):1438–1444

    PubMed  CAS  Google Scholar 

  • Kauffman EC et al (2011) Role of androgen receptor and associated lysine-demethylase coregulators, LSD1 and JMJD2A, in loc.lized and advanced human bladder cancer. Mol Carcinog 50(12):931–944

    PubMed  CAS  Google Scholar 

  • Kelly TK et al (2010) H2A.Z maintenance during mitosis reveals nucleosome shifting on mitotically silenced genes. Mol Cell 39(6):901–911

    PubMed  CAS  Google Scholar 

  • Klymkowsky MW, Savagner P (2009) Epithelial-mesenchymal transition: a cancer researcher's conceptual friend and foe. Am J Pathol 174(5):1588–1593

    PubMed  CAS  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    PubMed  CAS  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-­sequencing data. Nucleic Acids Res 39(Database issue):D152–D157

    PubMed  CAS  Google Scholar 

  • Ku M et al (2008) Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet 4(10):e1000242

    PubMed  Google Scholar 

  • Kumagai T et al (2007) Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (Vorinostat, SAHA) profoundly inhibits the growth of human pancreatic cancer cells. Int J Cancer 121(3):656–665

    PubMed  CAS  Google Scholar 

  • Kumari A et al (2009) Positive regulation of human telomerase reverse transcriptase gene expression and telomerase activity by DNA methylation in pancreatic cancer. Ann Surg Oncol 16(4):1051–1059

    PubMed  Google Scholar 

  • Lachner M, Jenuwein T (2002) The many faces of histone lysine methylation. Curr Opin Cell Biol 14(3):286–298

    PubMed  CAS  Google Scholar 

  • Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    PubMed  CAS  Google Scholar 

  • Lee KH et al (2009) Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 9(3):293–301

    PubMed  CAS  Google Scholar 

  • Li A et al (2010a) Pancreatic cancer DNMT1 expression and sensitivity to DNMT1 inhibitors. Cancer Biol Ther 9(4):5226–5237

    Google Scholar 

  • Li A et al (2010b) Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Res 70(13):5226–5237

    PubMed  CAS  Google Scholar 

  • Lim S et al (2010) Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis 31(3):512–520

    PubMed  CAS  Google Scholar 

  • Lister R et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322

    PubMed  CAS  Google Scholar 

  • Lohse B et al (2011) Inhibitors of histone demethylases. Bioorg Med Chem 19(12):3625–3636

    PubMed  CAS  Google Scholar 

  • Lunter G, Hein J (2004) A nucleotide substitution model with nearest-neighbour interactions. Bioinformatics 20(Suppl 1):i216–i223

    PubMed  CAS  Google Scholar 

  • Matsubayashi H et al (2003) Methylation of cyclin D2 is observed frequently in pancreatic cancer but is also an age-related phenomenon in gastrointestinal tissues. Clin Cancer Res 9(4):1446–1452

    PubMed  CAS  Google Scholar 

  • Matsubayashi H et al (2006) DNA methylation alterations in the pancreatic juice of patients with suspected pancreatic disease. Cancer Res 66(2):1208–1217

    PubMed  CAS  Google Scholar 

  • Maunakea AK et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303):253–257

    PubMed  CAS  Google Scholar 

  • Md Zin R, Murch A, Charles A (2011) Pathology, genetics and cytogenetics of Wilms’ tumour. Pathology 43(4):302–312

    PubMed  Google Scholar 

  • Mikkelsen TS et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-­committed cells. Nature 448(7153):553–560

    PubMed  CAS  Google Scholar 

  • Ms K et al (2008) Gonadotrophin releasing hormone antagonist in IVF/ICSI. J Hum Reprod Sci 1(1):29–32

    PubMed  Google Scholar 

  • Nakamura H (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Scientist 19(6):25–25

    Google Scholar 

  • Nakata B et al (2002) Prognostic value of microsatellite instability in resectable pancreatic cancer. Clin Cancer Res 8(8):2536–2540

    PubMed  CAS  Google Scholar 

  • Nalls D et al (2011) Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS One 6(8):e24099

    PubMed  CAS  Google Scholar 

  • Nan X et al (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393(6683):386–389

    PubMed  CAS  Google Scholar 

  • O’Hagan HM et al (2011) Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands. Cancer Cell 20(5):606–619 Ohike N, Maass N et al (2003) Clinicopathological significance and molecular regulation of maspin expression in ductal adenocarcinoma of the pancreas. Cancer Lett 199(2):193–200

    PubMed  Google Scholar 

  • Ohm JE et al (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39(2):237–242

    PubMed  CAS  Google Scholar 

  • Okami J, Simeone DM, Logsdon CD (2004) Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer. Cancer Res 64(15):5338–5346

    PubMed  CAS  Google Scholar 

  • Okano M, Xie SP, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19(3):219–220

    PubMed  CAS  Google Scholar 

  • Okano M et al (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257

    PubMed  CAS  Google Scholar 

  • Olson P et al (2009) MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev 23(18):2152–2165

    PubMed  CAS  Google Scholar 

  • Omura N et al (2008) Genome-wide profiling of methylated promoters in pancreatic adenocarcinoma. Cancer Biol Ther 7(7):1146–1156

    PubMed  CAS  Google Scholar 

  • Ooi SK et al (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448(7154):714–717

    PubMed  CAS  Google Scholar 

  • Ougolkov AV, Bilim VN, Billadeau DD (2008) Regulation of pancreatic tumor cell proliferation and chemoresistance by the histone methyltransferase enhancer of zeste homologue 2. Clin Cancer Res 14(21):6790–6796

    PubMed  CAS  Google Scholar 

  • Parsi MA et al (2008) DNA methylation alterations in endoscopic retrograde cholangiopancreatography brush samples of patients with suspected pancreaticobiliary disease. Clin Gastroenterol Hepatol 6(11):1270–1278

    PubMed  CAS  Google Scholar 

  • Peng L, Seto E (2011) Deacetylation of nonhistone proteins by HDACs and the implications in cancer. Handb Exp Pharmacol 206:39–56

    PubMed  CAS  Google Scholar 

  • Pili R et al (2012) Phase I study of the histone deacetylase inhibitor entinostat in combination with 13-cis retinoic acid in patients with solid tumours. Br J Cancer 106(1):77–84

    PubMed  CAS  Google Scholar 

  • Rauch TA et al (2009) A human B cell methylome at 100-base pair resolution. Proc Natl Acad Sci USA 106(3):671–678

    PubMed  CAS  Google Scholar 

  • Renaud S et al (2007) Dual role of DNA methylation inside and outside of CTCF-binding regions in the transcriptional regulation of the telomerase hTERT gene. Nucleic Acids Res 35(4):1245–1256

    PubMed  CAS  Google Scholar 

  • Robert MF et al (2003) DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet 33(1):61–65

    PubMed  CAS  Google Scholar 

  • Ropero S, Esteller M (2007) The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 1(1):19–25

    PubMed  CAS  Google Scholar 

  • Rosty C et al (2002) Overexpression of S100A4 in pancreatic ductal adenocarcinomas is associated with poor differentiation and DNA hypomethylation. Am J Pathol 160(1):45–50

    PubMed  CAS  Google Scholar 

  • Rosty C et al (2003) p16 Inactivation in pancreatic intraepithelial neoplasias (PanINs) arising in patients with chronic pancreatitis. Am J Surg Pathol 27(12):1495–1501

    PubMed  Google Scholar 

  • Ryu JK et al (2006) SK-7041, a new histone deacetylase inhibitor, induces G2-M cell cycle arrest and apoptosis in pancreatic cancer cell lines. Cancer Lett 237(1):143–154

    PubMed  CAS  Google Scholar 

  • Ryu JK et al (2011) Elevated microRNA miR-21 levels in pancreatic cyst fluid are predictive of mucinous precursor lesions of ductal adenocarcinoma. Pancreatology 11(3):343–350

    PubMed  CAS  Google Scholar 

  • Saito Y et al (2006) Specific activation of microRNA-127 with downregulation of the proto-­oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9(6):435–443

    PubMed  CAS  Google Scholar 

  • Sassen S, Miska EA, Caldas C (2008) MicroRNA: implications for cancer. Virchows Archiv 452(1):1–10

    PubMed  CAS  Google Scholar 

  • Sato N, Fukushima N et al (2003a) Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Res 63(13):3735–3742

    PubMed  CAS  Google Scholar 

  • Sato N, Fukushima N et al (2003b) SPARC/osteonectin is a frequent target for aberrant ­methylation in pancreaticadenocarcinoma and a mediator of tumor-stromal interactions. Oncogene 22(32):5021–5030

    PubMed  CAS  Google Scholar 

  • Sato N et al (2004) Identification of maspin and S100P as novel hypomethylation targets in ­pancreatic cancer using global gene expression profiling. Oncogene 23(8):1531–1538

    PubMed  CAS  Google Scholar 

  • Sato N et al (2005) Epigenetic inactivation of TFPI-2 as a common mechanism associated with growth and invasion of pancreatic ductal adenocarcinoma. Oncogene 24(5):850–858

    PubMed  CAS  Google Scholar 

  • Sato N et al (2008) CpG island methylation profile of pancreatic intraepithelial neoplasia. Mod Pathol 21(3):238–244

    PubMed  CAS  Google Scholar 

  • Sato F et al (2011) MicroRNAs and epigenetics. FEBS J 278(10):1598–1609

    PubMed  CAS  Google Scholar 

  • Schildhaus HU et al (2011) Lysine-specific demethylase 1 is highly expressed in solitary fibrous tumors, synovial sarcomas, rhabdomyosarcomas, desmoplastic small round cell tumors, and malignant peripheral nerve sheath tumors. Hum Pathol 42(11):1667–1675

    PubMed  CAS  Google Scholar 

  • Schoeftner S et al (2006) Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J 25(13):3110–3122

    PubMed  CAS  Google Scholar 

  • Schuebel KE et al (2007) Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet 3(9):1709–1723

    PubMed  CAS  Google Scholar 

  • Schutte M et al (1997) Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res 57(15):3126–3130

    PubMed  CAS  Google Scholar 

  • Shogren-Knaak M et al (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311(5762):844–847

    PubMed  CAS  Google Scholar 

  • Siegel R et al (2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61(4):212–236

    PubMed  Google Scholar 

  • Siegel R, Naishadham D, Jemal A (2012) Cancer statistics. CA Cancer J Clin 62(1):10–29

    PubMed  Google Scholar 

  • Song W et al (2010) Bmi-1 is related to proliferation, survival and poor prognosis in pancreatic cancer. Cancer Sci 101(7):1754–1760

    PubMed  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45

    PubMed  CAS  Google Scholar 

  • Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA 99(6):3740–3745

    PubMed  CAS  Google Scholar 

  • Thurman RE et al (2012) The accessible chromatin landscape of the human genome. Nature 489(7414):75–82

    PubMed  CAS  Google Scholar 

  • Tonini T et al (2004) Ezh2 reduces the ability of HDAC1-dependent pRb2/p130 transcriptional repression of cyclin A. Oncogene 23(28):4930–4937

    PubMed  CAS  Google Scholar 

  • Toyota M et al (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68(11):4123–4132

    PubMed  CAS  Google Scholar 

  • Trojer P, Reinberg D (2006) Histone lysine demethylases and their impact on epigenetics. Cell 125(2):213–217

    PubMed  CAS  Google Scholar 

  • Tsai H-C et al (2012) Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 21(3):430–446

    PubMed  CAS  Google Scholar 

  • Ueki T et al (2000) Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Res 60(7):1835–1839

    PubMed  CAS  Google Scholar 

  • Vincent A et al (2011) Genome-wide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma. Clin Cancer Res 17(13):4341–4354

    PubMed  CAS  Google Scholar 

  • Vincenz C, Kerppola TK (2008) Different polycomb group CBX family proteins associate with distinct regions of chromatin using nonhomologous protein sequences. Proc Natl Acad Sci USA 105(43):16572–16577

    PubMed  CAS  Google Scholar 

  • Vire E et al (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439(7078):871–874

    PubMed  CAS  Google Scholar 

  • Wang L et al (2004) Hierarchical recruitment of polycomb group silencing complexes. Mol Cell 14(5):637–646

    PubMed  CAS  Google Scholar 

  • Wang W et al (2009a) Significance of DNA methyltransferase-1 and histone deacetylase-1 in pancreatic cancer. Oncol Rep 21(6):1439–1447

    PubMed  CAS  Google Scholar 

  • Wang Y et al (2009b) LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138(4):660–672

    PubMed  CAS  Google Scholar 

  • Winter JM et al (2008) Absence of E-cadherin expression distinguishes noncohesive from cohesive pancreatic cancer. Clin Cancer Res 14(2):412–418

    PubMed  CAS  Google Scholar 

  • Yamamoto H et al (2001) Genetic and clinical features of human pancreatic ductal adenocarcinomas with widespread microsatellite instability. Cancer Res 61(7):3139–3144

    PubMed  CAS  Google Scholar 

  • Yang XJ, Seto E (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26(37):5310–5318

    PubMed  CAS  Google Scholar 

  • Yang H, Liu Y et al (2013) Tumor development is associated with decrease of TET gene expression and 5- methylcytosine hydroxylation. Oncogene 32(5):663–669 Yegnasubramanian S et al (2011) Chromosome-wide mapping of DNA methylation patterns in normal and malignant prostate cells reveals pervasive methylation of gene-associated and conserved intergenic sequences. BMC Genomics 12:313

    PubMed  CAS  Google Scholar 

  • Yen RW et al (1992) Isolation and characterization of the cDNA encoding human DNA ­methyltransferase. Nucleic Acids Res 20(9):2287–2291

    PubMed  CAS  Google Scholar 

  • Yu J, Li A et al (2012a) MicroRNA alterations of pancreatic intraepithelial neoplasias. Clin Cancer Res 18(4):981–992

    Google Scholar 

  • Yu J et al (2012b) MicroRNA alterations of pancreatic intraepithelial neoplasias. Clin Cancer Res 18(4):981–992

    PubMed  Google Scholar 

  • Zhang S et al (2011) Downregulation of miR-132 by promoter methylation contributes to pancreatic cancer development. Carcinogenesis 32(8):1183–1189

    PubMed  CAS  Google Scholar 

  • Zhao XD et al (2007) Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1(3):286–298

    PubMed  CAS  Google Scholar 

  • Zinn RL et al (2007) hTERT is expressed in cancer cell lines despite promoter DNA methylation by preservation of unmethylated DNA and active chromatin around the transcription start site. Cancer Res 67(1):194–201

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants (CA62924, R01CA120432, and RC2CA148376), and the Michael Rolfe Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Goggins M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ayars, M., Goggins, M. (2013). Epigenetic Alterations in Pancreatic Cancer. In: Simeone, D., Maitra, A. (eds) Molecular Genetics of Pancreatic Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6549-2_9

Download citation

Publish with us

Policies and ethics