Skip to main content

The Biology of K-Ras Signaling Pathways in Pancreatic Cancer

  • Chapter
  • First Online:
Molecular Genetics of Pancreatic Cancer

Abstract

Activating mutations in the K-Ras oncogene occur in approximately 90 % of cases of pancreatic ductal adenocarcinoma, and tumors containing mutant K-Ras often acquire a dependency on the expression of the oncogene. Therapies that block the oncogenic functions of K-Ras could have clinical efficacy for a disease that is currently refractory to all forms of treatment. This chapter describes the evidence, from both in vitro studies and studies using genetic mouse models, of the importance of oncogenic K-Ras and its downstream signaling pathways in driving pancreatic tumor formation and cancer cell growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abubaker J, Bavi P, Al-Haqawi W, Sultana M, Al-Harbi S, Al-Sanea N, Abduljabbar A, Ashari LH, Alhomoud S, Al-Dayel F, Uddin S, Al-Kuraya KS (2009) Prognostic significance of alterations in KRAS isoforms KRAS-4A/4B and KRAS mutations in colorectal carcinoma. J Pathol 219(4):435–445. doi 10.1002/path.2625

    Article  CAS  PubMed  Google Scholar 

  • Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, Horner J, Redston MS, DePinho RA (2003) Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 17(24):3112–3126, doi 10.1101/gad.1158703. 1158703 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Al-Aynati MM, Radulovich N, Riddell RH, Tsao MS (2004) Epithelial-cadherin and beta-catenin expression changes in pancreatic intraepithelial neoplasia. Clin Cancer Res 10(4):1235–1240

    Article  CAS  PubMed  Google Scholar 

  • Albazaz R, Verbeke CS, Rahman SH, McMahon MJ (2005) Cyclooxygenase-2 expression associated with severity of PanIN lesions: a possible link between chronic pancreatitis and pancreatic cancer. Pancreatology 5(4–5):361–369, doi PAN20050054_5361 [pii]. 10.1159/000086536

    Article  CAS  PubMed  Google Scholar 

  • Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M (1988) Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53(4):549–554. doi 0092-­8674(88)90571-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Altomare DA, Tanno S, De Rienzo A, Klein-Szanto AJ, Skele KL, Hoffman JP, Testa JR (2002) Frequent activation of AKT2 kinase in human pancreatic carcinomas. J Cell Biochem 87(4):470–476

    Article  PubMed  CAS  Google Scholar 

  • Ancrile B, Lim KH, Counter CM (2007) Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev 21(14):1714–1719, doi 21/14/1714 [pii]. 10.1101/gad.1549407

    Article  CAS  PubMed  Google Scholar 

  • Appels NM, Beijnen JH, Schellens JH (2005) Development of farnesyl transferase inhibitors: a review. Oncologist 10(8):565–578, doi: 10/8/565 [pii]. 10.1634/theoncologist.10-8-565

    Article  PubMed  Google Scholar 

  • Ardito CM, Gruner BM, Takeuchi KK, Lubeseder-Martellato C, Teichmann N, Mazur PK, Delgiorno KE, Carpenter ES, Halbrook CJ, Hall JC, Pal D, Briel T, Herner A, Trajkovic-Arsic M, Sipos B, Liou GY, Storz P, Murray NR, Threadgill DW, Sibilia M, Washington MK, Wilson CL, Schmid RM, Raines EW, Crawford HC, Siveke JT (2012) EGF receptor is required for KRAS-induced pancreatic tumorigenesis. Cancer Cell 22(3):304–317, doi S1535-­6108(12)00337-6 [pii]. 10.1016/j.ccr.2012.07.024

    Article  CAS  PubMed  Google Scholar 

  • Asano T, Yao Y, Zhu J, Li D, Abbruzzese JL, Reddy SA (2004) The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-kappaB and c-Myc in pancreatic cancer cells. Oncogene 23(53):8571–8580, doi 1207902 [pii]. 10.1038/sj.onc.1207902

    Article  CAS  PubMed  Google Scholar 

  • Azoitei N, Hoffmann CM, Ellegast JM, Ball CR, Obermayer K, Gossele U, Koch B, Faber K, Genze F, Schrader M, Kestler HA, Dohner H, Chiosis G, Glimm H, Frohling S, Scholl C (2012) Targeting of KRAS mutant tumors by HSP90 inhibitors involves degradation of STK33. J Exp Med 209(4):697–711, doi jem.20111910 [pii]. 10.1084/jem.20111910

    Article  CAS  PubMed  Google Scholar 

  • Babij C, Zhang Y, Kurzeja RJ, Munzli A, Shehabeldin A, Fernando M, Quon K, Kassner PD, Ruefli-Brasse AA, Watson VJ, Fajardo F, Jackson A, Zondlo J, Sun Y, Ellison AR, Plewa CA, San MT, Robinson J, McCarter J, Schwandner R, Judd T, Carnahan J, Dussault I (2011) STK33 kinase activity is nonessential in KRAS-dependent cancer cells. Cancer Res 71(17):5818–5826, doi 0008-5472.CAN-11-0778 [pii]. 10.1158/0008-5472.CAN-11-0778

    Article  CAS  PubMed  Google Scholar 

  • Barbacid M (1987) Ras genes. Annu Rev Biochem 56:779–827. ­doi:10.1146/annurev.bi.56.070187.004023

    Article  CAS  PubMed  Google Scholar 

  • Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy P, Meylan E, Scholl C, Frohling S, Chan EM, Sos ML, Michel K, Mermel C, Silver SJ, Weir BA, Reiling JH, Sheng Q, Gupta PB, Wadlow RC, Le H, Hoersch S, Wittner BS, Ramaswamy S, Livingston DM, Sabatini DM, Meyerson M, Thomas RK, Lander ES, Mesirov JP, Root DE, Gilliland DG, Jacks T, Hahn WC (2009) Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462(7269):108–112, doi:nature08460 [pii]. 10.1038/nature08460

    Article  CAS  PubMed  Google Scholar 

  • Bardeesy N, Aguirre AJ, Chu GC, Cheng KH, Lopez LV, Hezel AF, Feng B, Brennan C, Weissleder R, Mahmood U, Hanahan D, Redston MS, Chin L, Depinho RA (2006) Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci USA 103(15):5947–5952, doi:0601273103 [pii]. 10.1073/pnas.0601273103

    Article  CAS  PubMed  Google Scholar 

  • Barreda DR, Hanington PC, Belosevic M (2004) Regulation of myeloid development and function by colony stimulating factors. Dev Comp Immunol 28(5):509–554, doi:10.1016/j.dci.2003.09.010. S0145305X03001848 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Bar-Sagi D, Feramisco JR (1986) Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science 233(4768):1061–1068

    Article  CAS  PubMed  Google Scholar 

  • Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ, Vonderheide RH (2012) Tumor-­derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21(6):822–835, doi:S1535-­6108(12)00167-5 [pii]. 10.1016/j.ccr.2012.04.025

    Article  CAS  PubMed  Google Scholar 

  • Bi Y, Page SL, Williams JA (2005) Rho and Rac promote acinar morphological changes, actin reorganization, and amylase secretion. Am J Physiol Gastrointest Liver Physiol 289(3):G561–G570, doi:00508.2004 [pii]. 10.1152/ajpgi.00508.2004

    Article  CAS  PubMed  Google Scholar 

  • Bloomston M, Bhardwaj A, Ellison EC, Frankel WL (2006) Epidermal growth factor receptor expression in pancreatic carcinoma using tissue microarray technique. Dig Surg 23(1–2):74–79, doi:93497 [pii]. 10.1159/000093497

    Article  CAS  PubMed  Google Scholar 

  • Boriack-Sjodin PA, Margarit SM, Bar-Sagi D, Kuriyan J (1998) The structural basis of the activation of Ras by Sos. Nature 394(6691):337–343. doi 10.1038/28548

    Article  CAS  PubMed  Google Scholar 

  • Bos JL (1989) ras oncogenes in human cancer: a review. Cancer Res 49(17):4682–4689

    CAS  PubMed  Google Scholar 

  • Boyartchuk VL, Ashby MN, Rine J (1997) Modulation of Ras and a-factor function by carboxyl-­terminal proteolysis. Science 275(5307):1796–1800

    Article  CAS  PubMed  Google Scholar 

  • Brat DJ, Lillemoe KD, Yeo CJ, Warfield PB, Hruban RH (1998) Progression of pancreatic intraductal neoplasias to infiltrating adenocarcinoma of the pancreas. Am J Surg Pathol 22(2):163–169

    Article  CAS  PubMed  Google Scholar 

  • Brembeck FH, Schreiber FS, Deramaudt TB, Craig L, Rhoades B, Swain G, Grippo P, Stoffers DA, Silberg DG, Rustgi AK (2003) The mutant K-ras oncogene causes pancreatic periductal lymphocytic infiltration and gastric mucous neck cell hyperplasia in transgenic mice. Cancer Res 63(9):2005–2009

    CAS  PubMed  Google Scholar 

  • Bremner R, Balmain A (1990) Genetic changes in skin tumor progression: correlation between presence of a mutant ras gene and loss of heterozygosity on mouse chromosome 7. Cell 61(3):407–417. doi 0092-8674(90)90523-H [pii]

    Article  CAS  PubMed  Google Scholar 

  • Bronte V, Chappell DB, Apolloni E, Cabrelle A, Wang M, Hwu P, Restifo NP (1999) Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J Immunol 162(10):5728–5737

    CAS  PubMed  Google Scholar 

  • Brunner TB, Hahn SM, Gupta AK, Muschel RJ, McKenna WG, Bernhard EJ (2003) Farnesyltransferase inhibitors: an overview of the results of preclinical and clinical investigations. Cancer Res 63(18):5656–5668

    CAS  PubMed  Google Scholar 

  • Buday L (1999) Membrane-targeting of signalling molecules by SH2/SH3 domain-containing adaptor proteins. Biochim Biophys Acta 1422(2):187–204. doi S0304-4157(99)00005-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Buhrman G, Holzapfel G, Fetics S, Mattos C (2010) Allosteric modulation of Ras positions Q61 for a direct role in catalysis. Proc Natl Acad Sci USA 107(11):4931–4936, doi:0912226107 [pii]. 10.1073/pnas.0912226107

    Article  CAS  PubMed  Google Scholar 

  • Carriere C, Young AL, Gunn JR, Longnecker DS, Korc M (2009) Acute pancreatitis markedly accelerates pancreatic cancer progression in mice expressing oncogenic Kras. Biochem Biophys Res Commun 382(3):561–565, doi:S0006-291X(09)00533-6 [pii]. 10.1016/j.bbrc.2009.03.068

    Article  CAS  PubMed  Google Scholar 

  • Chadha KS, Khoury T, Yu J, Black JD, Gibbs JF, Kuvshinoff BW, Tan D, Brattain MG, Javle MM (2006) Activated Akt and Erk expression and survival after surgery in pancreatic carcinoma. Ann Surg Oncol 13(7):933–939. doi 10.1245/ASO.2006.07.011

    Article  PubMed  Google Scholar 

  • Chappell WH, Steelman LS, Long JM, Kempf RC, Abrams SL, Franklin RA, Basecke J, Stivala F, Donia M, Fagone P, Malaponte G, Mazzarino MC, Nicoletti F, Libra M, Maksimovic-Ivanic D, Mijatovic S, Montalto G, Cervello M, Laidler P, Milella M, Tafuri A, Bonati A, Evangelisti C, Cocco L, Martelli AM, McCubrey JA (2011) Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget 2(3):135–164. doi 240 [pii]

    PubMed  Google Scholar 

  • Cheng JQ, Ruggeri B, Klein WM, Sonoda G, Altomare DA, Watson DK, Testa JR (1996) Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc Natl Acad Sci USA 93(8):3636–3641

    Article  CAS  PubMed  Google Scholar 

  • Chu GC, Kimmelman AC, Hezel AF, DePinho RA (2007) Stromal biology of pancreatic cancer. J Cell Biochem 101(4):887–907. doi 10.1002/jcb.21209

    Article  CAS  PubMed  Google Scholar 

  • Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH (2007) Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res 67(19):9518–9527, doi:67/19/9518 [pii]. 10.1158/0008-5472.CAN-07-0175

    Article  CAS  PubMed  Google Scholar 

  • Clarke S, Vogel JP, Deschenes RJ, Stock J (1988) Posttranslational modification of the Ha-ras oncogene protein: evidence for a third class of protein carboxyl methyltransferases. Proc Natl Acad Sci USA 85(13):4643–4647

    Article  CAS  PubMed  Google Scholar 

  • Collins MA, Bednar F, Zhang Y, Brisset JC, Galban S, Galban CJ, Rakshit S, Flannagan KS, Adsay NV, Pasca di Magliano M (2012) Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J Clin Invest 122(2):639–653, doi:59227 [pii]. 10.1172/JCI59227

    Article  CAS  PubMed  Google Scholar 

  • Collisson EA, Trejo CL, Silva JM, Gu S, Korkola JE, Heiser LM, Charles RP, Rabinovich BA, Hann B, Dankort D, Spellman PT, Phillips WA, Gray JW, McMahon M (2012) A central role for RAF→MEK→ERK signaling in the genesis of pancreatic ductal adenocarcinoma. Cancer Discov 2(8):685–693, doi:2159-8290.CD-11-0347 [pii]. 10.1158/2159-8290.CD-11-0347

    Article  CAS  PubMed  Google Scholar 

  • Corcoran RB, Contino G, Deshpande V, Tzatsos A, Conrad C, Benes CH, Levy DE, Settleman J, Engelman JA, Bardeesy N (2011) STAT3 plays a critical role in KRAS-induced pancreatic tumorigenesis. Cancer Res 71(14):5020–5029, doi:0008-5472.CAN-11-0908 [pii]. 10.1158/0008-5472.CAN-11-0908

    Article  CAS  PubMed  Google Scholar 

  • Crnogorac-Jurcevic T, Efthimiou E, Capelli P, Blaveri E, Baron A, Terris B, Jones M, Tyson K, Bassi C, Scarpa A, Lemoine NR (2001) Gene expression profiles of pancreatic cancer and stromal desmoplasia. Oncogene 20(50):7437–7446. doi 10.1038/sj.onc.1204935

    Article  CAS  PubMed  Google Scholar 

  • Daniluk J, Liu Y, Deng D, Chu J, Huang H, Gaiser S, Cruz-Monserrate Z, Wang H, Ji B, Logsdon CD (2012) An NF-kappaB pathway-mediated positive feedback loop amplifies Ras activity to pathological levels in mice. J Clin Invest 122(4):1519–1528, doi:59743 [pii]. 10.1172/JCI59743

    Article  CAS  PubMed  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-­Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954, doi 10.1038/nature00766. nature00766 [pii]

    Article  CAS  PubMed  Google Scholar 

  • De La OJ, Emerson LL, Goodman JL, Froebe SC, Illum BE, Curtis AB, Murtaugh LC (2008) Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. Proc Natl Acad Sci USA 105(48):18907–18912, doi:0810111105 [pii]. 10.1073/pnas.0810111105

    Article  Google Scholar 

  • Der CJ, Krontiris TG, Cooper GM (1982) Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc Natl Acad Sci U S A 79(11):3637–3640

    Article  CAS  PubMed  Google Scholar 

  • Dolcetti L, Peranzoni E, Ugel S, Marigo I, Fernandez Gomez A, Mesa C, Geilich M, Winkels G, Traggiai E, Casati A, Grassi F, Bronte V (2010) Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 40(1):22–35. doi 10.1002/eji.200939903

    Article  CAS  PubMed  Google Scholar 

  • Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3(1):11–22. doi 10.1038/nrc969. nrc969 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ebert MP, Fei G, Schandl L, Mawrin C, Dietzmann K, Herrera P, Friess H, Gress TM, Malfertheiner P (2002) Reduced PTEN expression in the pancreas overexpressing transforming growth factor-­beta 1. Br J Cancer 86(2):257–262. doi 10.1038/sj.bjc.6600031

    Article  CAS  PubMed  Google Scholar 

  • Fendrich V, Esni F, Garay MV, Feldmann G, Habbe N, Jensen JN, Dor Y, Stoffers D, Jensen J, Leach SD, Maitra A (2008) Hedgehog signaling is required for effective regeneration of exocrine pancreas. Gastroenterology 135(2):621–631, doi:S0016-5085(08)00640-9 [pii]. 10.1053/j.gastro.2008.04.011

    Article  CAS  PubMed  Google Scholar 

  • Field J, Broek D, Kataoka T, Wigler M (1987) Guanine nucleotide activation of, and competition between, RAS proteins from Saccharomyces cerevisiae. Mol Cell Biol 7(6):2128–2133

    CAS  PubMed  Google Scholar 

  • Fjallskog ML, Lejonklou MH, Oberg KE, Eriksson BK, Janson ET (2003) Expression of molecular targets for tyrosine kinase receptor antagonists in malignant endocrine pancreatic tumors. Clin Cancer Res 9(4):1469–1473

    PubMed  Google Scholar 

  • Fleming JB, Shen GL, Holloway SE, Davis M, Brekken RA (2005) Molecular consequences of silencing mutant K-ras in pancreatic cancer cells: justification for K-ras-directed therapy. Mol Cancer Res 3(7):413–423, doi:3/7/413 [pii]. 10.1158/1541-7786.MCR-04-0206

    Article  CAS  PubMed  Google Scholar 

  • Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, Teague JW, Campbell PJ, Stratton MR, Futreal PA (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945–D950, doi:gkq929 [pii]. 0.1093/nar/gkq929

    Article  CAS  PubMed  Google Scholar 

  • Freije JM, Blay P, Pendas AM, Cadinanos J, Crespo P, Lopez-Otin C (1999) Identification and chromosomal location of two human genes encoding enzymes potentially involved in proteolytic maturation of farnesylated proteins. Genomics 58(3):270–280, doi:10.1006/geno.1999.5834. S0888754399958342 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Fu HW, Casey PJ (1999) Enzymology and biology of CaaX protein prenylation. Recent Prog Horm Res 54:315–342, discussion 342–313

    CAS  PubMed  Google Scholar 

  • Fujii S, Mitsunaga S, Yamazaki M, Hasebe T, Ishii G, Kojima M, Kinoshita T, Ueno T, Esumi H, Ochiai A (2008) Autophagy is activated in pancreatic cancer cells and correlates with poor patient outcome. Cancer Sci 99(9):1813–1819, doi:CAS893 [pii]. 10.1111/j.1349-7006.2008.00893.x

    CAS  PubMed  Google Scholar 

  • Fujioka S, Sclabas GM, Schmidt C, Niu J, Frederick WA, Dong QG, Abbruzzese JL, Evans DB, Baker C, Chiao PJ (2003) Inhibition of constitutive NF-kappa B activity by I kappa B alpha M suppresses tumorigenesis. Oncogene 22(9):1365–1370, doi:10.1038/sj.onc.1206323. 1206323 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Fukuda A, Wang SC, Morris JP, Folias AE, Liou A, Kim GE, Akira S, Boucher KM, Firpo MA, Mulvihill SJ, Hebrok M (2011) Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell 19(4):441–455, doi:S1535-6108(11)00091-2 [pii]. 10.1016/j.ccr.2011.03.002

    Article  CAS  PubMed  Google Scholar 

  • Funahashi H, Satake M, Dawson D, Huynh NA, Reber HA, Hines OJ, Eibl G (2007) Delayed progression of pancreatic intraepithelial neoplasia in a conditional Kras(G12D) mouse model by a selective cyclooxygenase-2 inhibitor. Cancer Res 67(15):7068–7071, doi:0008-5472.CAN-07-0970 [pii]. 10.1158/0008-5472.CAN-07-0970

    Article  CAS  PubMed  Google Scholar 

  • Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174, doi:nri2506 [pii]. 10.1038/nri2506

    Article  CAS  PubMed  Google Scholar 

  • Geyer M, Schweins T, Herrmann C, Prisner T, Wittinghofer A, Kalbitzer HR (1996) Conformational transitions in p21ras and in its complexes with the effector protein Raf-RBD and the GTPase activating protein GAP. Biochemistry 35(32):10308–10320, doi:10.1021/bi952858k. bi952858k [pii]

    Article  CAS  PubMed  Google Scholar 

  • Geyer M, Herrmann C, Wohlgemuth S, Wittinghofer A, Kalbitzer HR (1997) Structure of the Ras-­binding domain of RalGEF and implications for Ras binding and signalling. Nat Struct Biol 4(9):694–699

    Article  CAS  PubMed  Google Scholar 

  • Gibbs JB, Sigal IS, Poe M, Scolnick EM (1984) Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules. Proc Natl Acad Sci USA 81(18):5704–5708

    Article  CAS  PubMed  Google Scholar 

  • Gidekel Friedlander SY, Chu GC, Snyder EL, Girnius N, Dibelius G, Crowley D, Vasile E, DePinho RA, Jacks T (2009) Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell 16(5):379–389, doi:S1535-6108(09)00338-9 [pii]. 10.1016/j.ccr.2009.09.027

    Article  PubMed  CAS  Google Scholar 

  • Goldfarb M, Shimizu K, Perucho M, Wigler M (1982) Isolation and preliminary characterization of a human transforming gene from T24 bladder carcinoma cells. Nature 296(5856):404–409

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Garcia A, Pritchard CA, Paterson HF, Mavria G, Stamp G, Marshall CJ (2005) RalGDS is required for tumor formation in a model of skin carcinogenesis. Cancer Cell 7(3):219–226, doi:S1535-6108(05)00059-0 [pii]. 10.1016/j.ccr.2005.01.029

    Article  CAS  PubMed  Google Scholar 

  • Grippo PJ, Nowlin PS, Demeure MJ, Longnecker DS, Sandgren EP (2003) Preinvasive pancreatic neoplasia of ductal phenotype induced by acinar cell targeting of mutant Kras in transgenic mice. Cancer Res 63(9):2016–2019

    CAS  PubMed  Google Scholar 

  • Guerra C, Schuhmacher AJ, Canamero M, Grippo PJ, Verdaguer L, Perez-Gallego L, Dubus P, Sandgren EP, Barbacid M (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11(3):291–302, doi:S1535-6108(07)00027-X [pii]. 10.1016/j.ccr.2007.01.012

    Article  CAS  PubMed  Google Scholar 

  • Guerra C, Collado M, Navas C, Schuhmacher AJ, Hernandez-Porras I, Canamero M, Rodriguez-­Justo M, Serrano M, Barbacid M (2011) Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell 19(6):728–739, doi:S1535-6108(11)00189-9 [pii]. 10.1016/j.ccr.2011.05.011

    Article  CAS  PubMed  Google Scholar 

  • Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, Kamphorst JJ, Chen G, Lemons JM, Karantza V, Coller HA, Dipaola RS, Gelinas C, Rabinowitz JD, White E (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25(5):460–470, doi:gad.2016311 [pii]. 10.1101/gad.2016311

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez L, Magee AI, Marshall CJ, Hancock JF (1989) Post-translational processing of p21ras is two-step and involves carboxyl-methylation and carboxy-terminal proteolysis. EMBO J 8(4):1093–1098

    CAS  PubMed  Google Scholar 

  • Habbe N, Shi G, Meguid RA, Fendrich V, Esni F, Chen H, Feldmann G, Stoffers DA, Konieczny SF, Leach SD, Maitra A (2008) Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice. Proc Natl Acad Sci U S A 105(48):18913–18918, doi:0810097105 [pii]. 10.1073/pnas.0810097105

    Article  CAS  PubMed  Google Scholar 

  • Hald J, Hjorth JP, German MS, Madsen OD, Serup P, Jensen J (2003) Activated Notch1 prevents differentiation of pancreatic acinar cells and attenuate endocrine development. Dev Biol 260(2):426–437. doi S0012160603003269 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Hall A, Marshall CJ, Spurr NK, Weiss RA (1983) Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1. Nature 303(5916):396–400

    Article  CAS  PubMed  Google Scholar 

  • Hamad NM, Elconin JH, Karnoub AE, Bai W, Rich JN, Abraham RT, Der CJ, Counter CM (2002) Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev 16(16):2045–2057. doi 10.1101/gad.993902

    Article  CAS  PubMed  Google Scholar 

  • Hancock JF, Magee AI, Childs JE, Marshall CJ (1989) All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57(7):1167–1177. doi 0092-8674(89)90054-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Hancock JF, Cadwallader K, Marshall CJ (1991) Methylation and proteolysis are essential for efficient membrane binding of prenylated p21K-ras(B). EMBO J 10(3):641–646

    CAS  PubMed  Google Scholar 

  • Hanlon L, Avila JL, Demarest RM, Troutman S, Allen M, Ratti F, Rustgi AK, Stanger BZ, Radtke F, Adsay V, Long F, Capobianco AJ, Kissil JL (2010) Notch1 functions as a tumor suppressor in a model of K-ras-induced pancreatic ductal adenocarcinoma. Cancer Res 70(11):4280–4286, doi:0008-5472.CAN-09-4645 [pii]. 10.1158/0008-5472.CAN-09-4645

    Article  CAS  PubMed  Google Scholar 

  • Hegi ME, Devereux TR, Dietrich WF, Cochran CJ, Lander ES, Foley JF, Maronpot RR, Anderson MW, Wiseman RW (1994) Allelotype analysis of mouse lung carcinomas reveals frequent allelic losses on chromosome 4 and an association between allelic imbalances on chromosome 6 and K-ras activation. Cancer Res 54(23):6257–6264

    CAS  PubMed  Google Scholar 

  • Heid I, Lubeseder-Martellato C, Sipos B, Mazur PK, Lesina M, Schmid RM, Siveke JT (2011) Early requirement of Rac1 in a mouse model of pancreatic cancer. Gastroenterology 141(2):719–730, 730 e711-717. doi:S0016-5085(11)00598-1 [pii]. 10.1053/j.gastro.2011.04.043

    Article  CAS  PubMed  Google Scholar 

  • Hill R, Calvopina JH, Kim C, Wang Y, Dawson DW, Donahue TR, Dry S, Wu H (2010) PTEN loss accelerates KrasG12D-induced pancreatic cancer development. Cancer Res 70(18):7114–7124, doi:0008-5472.CAN-10-1649 [pii]. 10.1158/0008-5472.CAN-10-1649

    Article  CAS  PubMed  Google Scholar 

  • Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Hitt BA, Kawaguchi Y, Johann D, Liotta LA, Crawford HC, Putt ME, Jacks T, Wright CVE, Hruban RH, Lowy AM, Tuveson DA (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4(6):437–450

    Article  CAS  PubMed  Google Scholar 

  • Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, Rustgi AK, Chang S, Tuveson DA (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7(5):469–483. doi 10.1016/j.ccr.2005.04.023

    Article  CAS  PubMed  Google Scholar 

  • Hippert MM, O'Toole PS, Thorburn A (2006) Autophagy in cancer: good, bad, or both? Cancer Res 66(19):9349–9351, doi:66/19/9349 [pii]. 10.1158/0008-5472.CAN-06-1597

    Article  CAS  PubMed  Google Scholar 

  • Hruban RH, Wilentz RE, Goggins M, Offerhaus GJ, Yeo CJ, Kern SE (1999) Pathology of incipient pancreatic cancer. Ann Oncol 10(Suppl 4):9–11

    Article  PubMed  Google Scholar 

  • Hrycyna CA, Sapperstein SK, Clarke S, Michaelis S (1991) The Saccharomyces cerevisiae STE14 gene encodes a methyltransferase that mediates C-terminal methylation of a-factor and RAS proteins. EMBO J 10(7):1699–1709

    CAS  PubMed  Google Scholar 

  • Ijichi H, Chytil A, Gorska AE, Aakre ME, Fujitani Y, Fujitani S, Wright CV, Moses HL (2006) Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. Genes Dev 20(22):3147–3160, doi:20/22/3147 [pii]. 10.1101/gad.1475506

    Article  CAS  PubMed  Google Scholar 

  • Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4(9):648–657, doi:10.1038/ncb839. ncb839 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ishimura N, Yamasawa K, Karim Rumi MA, Kadowaki Y, Ishihara S, Amano Y, Nio Y, Higami T, Kinoshita Y (2003) BRAF and K-ras gene mutations in human pancreatic cancers. Cancer Lett 199(2):169–173. doi S0304383503003847 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Yamasaki K, Iwahara J, Terada T, Kamiya A, Shirouzu M, Muto Y, Kawai G, Yokoyama S, Laue ED, Walchli M, Shibata T, Nishimura S, Miyazawa T (1997) Regional polysterism in the GTP-bound form of the human c-Ha-Ras protein. Biochemistry 36(30):9109–9119, doi:10.1021/bi970296u. bi970296u [pii]

    Article  CAS  PubMed  Google Scholar 

  • Izeradjene K, Combs C, Best M, Gopinathan A, Wagner A, Grady WM, Deng C-X, Hruban RH, Adsay NV, Tuveson DA, Hingorani SR (2007) Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell 11(3):229–243. doi 10.1016/j.ccr.2007.01.017

    Article  CAS  PubMed  Google Scholar 

  • Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, Jacks T, Tuveson DA (2001) Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15(24):3243–3248. doi 10.1101/gad.943001

    Article  CAS  PubMed  Google Scholar 

  • Janku F, Lee JJ, Tsimberidou AM, Hong DS, Naing A, Falchook GS, Fu S, Luthra R, Garrido-­Laguna I, Kurzrock R (2011) PIK3CA mutations frequently coexist with RAS and BRAF mutations in patients with advanced cancers. PLoS One 6(7):e22769, doi:10.1371/journal.pone.0022769. PONE-D-11-08638 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Jensen JN, Cameron E, Garay MV, Starkey TW, Gianani R, Jensen J (2005) Recapitulation of elements of embryonic development in adult mouse pancreatic regeneration. Gastroenterology 128(3):728–741. doi S0016508504021997 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ji B, Tsou L, Wang H, Gaiser S, Chang DZ, Daniluk J, Bi Y, Grote T, Longnecker DS, Logsdon CD (2009) Ras activity levels control the development of pancreatic diseases. Gastroenterology 137(3):1072–1082, 1082 e1071-1076. doi:S0016-5085(09)00900-7 [pii]. 10.1053/j.gastro.2009.05.052

    Article  CAS  PubMed  Google Scholar 

  • Johnson L, Greenbaum D, Cichowski K, Mercer K, Murphy E, Schmitt E, Bronson RT, Umanoff H, Edelmann W, Kucherlapati R, Jacks T (1997) K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev 11(19):2468–2481

    Article  CAS  PubMed  Google Scholar 

  • Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu B, Lin MT, Calhoun ES, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith DR, Hidalgo M, Leach SD, Klein AP, Jaffee EM, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman JR, Kern SE, Hruban RH, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897):1801–1806, doi:1164368 [pii]. 10.1126/science.1164368

    Article  CAS  PubMed  Google Scholar 

  • Kanda M, Matthaei H, Wu J, Hong SM, Yu J, Borges M, Hruban RH, Maitra A, Kinzler K, Vogelstein B, Goggins M (2012) Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology 142(4):730–733 e739, doi:S0016-5085(12)00007-8 [pii]. 10.1053/j.gastro.2011.12.042

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Bader AG, Vogt PK (2005) Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci U S A 102(3):802–807, doi:0408864102 [pii]. 10.1073/pnas.0408864102

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kim HY, Lee YK, Yoon YS, Xu WG, Yoon JK, Choi SE, Ko YG, Kim MJ, Lee SJ, Wang HJ, Yoon G (2011) Involvement of mitophagy in oncogenic K-Ras-induced transformation: overcoming a cellular energy deficit from glucose deficiency. Autophagy 7(10):1187–1198, doi:16643 [pii]. 10.4161/auto.7.10.16643

    Article  CAS  PubMed  Google Scholar 

  • Kobrin MS, Funatomi H, Friess H, Buchler MW, Stathis P, Korc M (1994) Induction and expression of heparin-binding EGF-like growth factor in human pancreatic cancer. Biochem Biophys Res Commun 202(3):1705–1709, doi:S0006-291X(84)72131-0 [pii]. 10.1006/bbrc.1994.2131

    Article  CAS  PubMed  Google Scholar 

  • Koera K, Nakamura K, Nakao K, Miyoshi J, Toyoshima K, Hatta T, Otani H, Aiba A, Katsuki M (1997) K-ras is essential for the development of the mouse embryo. Oncogene 15(10):1151–1159. doi 10.1038/sj.onc.1201284

    Article  CAS  PubMed  Google Scholar 

  • Korc M (2007) Pancreatic cancer-associated stroma production. Am J Surg 194(4 Suppl):S84–S86, doi:S0002-9610(07)00348-0 [pii]. 10.1016/j.amjsurg.2007.05.004

    Article  CAS  PubMed  Google Scholar 

  • Krengel U, Schlichting I, Scherer A, Schumann R, Frech M, John J, Kabsch W, Pai EF, Wittinghofer A (1990) Three-dimensional structures of H-ras p21 mutants: molecular basis for their inability to function as signal switch molecules. Cell 62(3):539–548. doi 0092-8674(90)90018-A [pii]

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Angelini S, Czene K, Sauroja I, Hahka-Kemppinen M, Pyrhonen S, Hemminki K (2003) BRAF mutations in metastatic melanoma: a possible association with clinical outcome. Clin Cancer Res 9(9):3362–3368

    CAS  PubMed  Google Scholar 

  • Lambert JM, Lambert QT, Reuther GW, Malliri A, Siderovski DP, Sondek J, Collard JG, Der CJ (2002) Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism. Nat Cell Biol 4(8):621–625, doi:10.1038/ncb833. ncb833 [pii]

    CAS  PubMed  Google Scholar 

  • Lampel M, Kern HF (1977) Acute interstitial pancreatitis in the rat induced by excessive doses of a pancreatic secretagogue. Virchows Arch A Pathol Anat Histol 373(2):97–117

    Article  CAS  PubMed  Google Scholar 

  • Lee KE, Bar-Sagi D (2010) Oncogenic KRas suppresses inflammation-associated senescence of pancreatic ductal cells. Cancer Cell 18(5):448–458, doi:S1535-6108(10)00422-8 [pii]. 10.1016/j.ccr.2010.10.020

    Article  CAS  PubMed  Google Scholar 

  • Lesina M, Kurkowski MU, Ludes K, Rose-John S, Treiber M, Kloppel G, Yoshimura A, Reindl W, Sipos B, Akira S, Schmid RM, Algul H (2011) Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 19(4):456–469, doi:S1535-6108(11)00119-X [pii]. 10.1016/j.ccr.2011.03.009

    Article  CAS  PubMed  Google Scholar 

  • Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115(10):2679–2688. doi 10.1172/JCI26390

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275(5308):1943–1947

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhang Z, Dai Z, Plass C, Morrison C, Wang Y, Wiest JS, Anderson MW, You M (2003) LOH of chromosome 12p correlates with Kras2 mutation in non-small cell lung cancer. Oncogene 22(8):1243–1246, doi:10.1038/sj.onc.1206192. 1206192 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Li H, Cao HF, Wan J, Li Y, Zhu ML, Zhao P (2007) Growth inhibitory effect of wild-type Kras2 gene on a colonic adenocarcinoma cell line. World J Gastroenterol 13(6):934–938

    Article  CAS  PubMed  Google Scholar 

  • Lim KH, Baines AT, Fiordalisi JJ, Shipitsin M, Feig LA, Cox AD, Der CJ, Counter CM (2005) Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell 7(6):533–545, doi:S1535-6108(05)00157-1 [pii]. 10.1016/j.ccr.2005.04.030

    Article  CAS  PubMed  Google Scholar 

  • Lim KH, O'Hayer K, Adam SJ, Kendall SD, Campbell PM, Der CJ, Counter CM (2006) Divergent roles for RalA and RalB in malignant growth of human pancreatic carcinoma cells. Curr Biol 16(24):2385–2394, doi:S0960-9822(06)02359-1 [pii]. 10.1016/j.cub.2006.10.023

    Article  CAS  PubMed  Google Scholar 

  • Ling J, Kang Y, Zhao R, Xia Q, Lee DF, Chang Z, Li J, Peng B, Fleming JB, Wang H, Liu J, Lemischka IR, Hung MC, Chiao PJ (2012) KrasG12D-induced IKK2/beta/NF-kappaB activation by IL-1alpha and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell 21(1):105–120, doi:S1535-6108(11)00475-2 [pii]. 10.1016/j.ccr.2011.12.006

    Article  CAS  PubMed  Google Scholar 

  • Lock R, Roy S, Kenific CM, Su JS, Salas E, Ronen SM, Debnath J (2011) Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell 22(2):165–178, doi:mbc.E10-06-0500 [pii]. 10.1091/mbc.E10-06-0500

    Article  CAS  PubMed  Google Scholar 

  • Lowenfels AB, Maisonneuve P, Lankisch PG (1999) Chronic pancreatitis and other risk factors for pancreatic cancer. Gastroenterol Clin North Am 28(3):673–685

    Article  CAS  PubMed  Google Scholar 

  • Lowy AM, Fenoglio-Preiser C, Kim OJ, Kordich J, Gomez A, Knight J, James L, Groden J (2003) Dysregulation of beta-catenin expression correlates with tumor differentiation in pancreatic duct adenocarcinoma. Ann Surg Oncol 10(3):284–290

    Article  PubMed  Google Scholar 

  • Luo T, Masson K, Jaffe JD, Silkworth W, Ross NT, Scherer CA, Scholl C, Frohling S, Carr SA, Stern AM, Schreiber SL, Golub TR (2012) STK33 kinase inhibitor BRD-8899 has no effect on KRAS-dependent cancer cell viability. Proc Natl Acad Sci U S A 109(8):2860–2865, doi:1120589109 [pii]. 10.1073/pnas.1120589109

    Article  CAS  PubMed  Google Scholar 

  • Mahadevan D, Von Hoff DD (2007) Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther 6(4):1186–1197, doi:1535-7163.MCT-06-0686 [pii]. 10.1158/1535-­7163.MCT-06-0686

    Article  CAS  PubMed  Google Scholar 

  • Maitra A, Ashfaq R, Gunn CR, Rahman A, Yeo CJ, Sohn TA, Cameron JL, Hruban RH, Wilentz RE (2002) Cyclooxygenase 2 expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia: an immunohistochemical analysis with automated cellular imaging. Am J Clin Pathol 118(2):194–201. doi 10.1309/TPG4-CK1C-9V8V-8AWC

    Article  CAS  PubMed  Google Scholar 

  • Maitra A, Adsay NV, Argani P, Iacobuzio-Donahue C, De Marzo A, Cameron JL, Yeo CJ, Hruban RH (2003) Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol 16(9):902–912. doi 10.1097/01.MP.0000086072.56290.FB

    Article  PubMed  Google Scholar 

  • Mallen-St Clair J, Soydaner-Azeloglu R, Lee KE, Taylor L, Livanos A, Pylayeva-Gupta Y, Miller G, Margueron R, Reinberg D, Bar-Sagi D (2012) EZH2 couples pancreatic regeneration to neoplastic progression. Genes Dev 26(5):439–444, doi:26/5/439 [pii]. 10.1101/gad.181800.111

    Article  PubMed  CAS  Google Scholar 

  • Maniati E, Bossard M, Cook N, Candido JB, Emami-Shahri N, Nedospasov SA, Balkwill FR, Tuveson DA, Hagemann T (2011) Crosstalk between the canonical NF-kappaB and Notch signaling pathways inhibits Ppargamma expression and promotes pancreatic cancer progression in mice. J Clin Invest 121(12):4685–4699, doi:45797 [pii]. 10.1172/JCI45797

    Article  CAS  PubMed  Google Scholar 

  • Manne V, Bekesi E, Kung HF (1985) Ha-ras proteins exhibit GTPase activity: point mutations that activate Ha-ras gene products result in decreased GTPase activity. Proc Natl Acad Sci USA 82(2):376–380

    Article  CAS  PubMed  Google Scholar 

  • Marais R, Light Y, Paterson HF, Marshall CJ (1995) Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J 14(13):3136–3145

    CAS  PubMed  Google Scholar 

  • Marigo I, Bosio E, Solito S, Mesa C, Fernandez A, Dolcetti L, Ugel S, Sonda N, Bicciato S, Falisi E, Calabrese F, Basso G, Zanovello P, Cozzi E, Mandruzzato S, Bronte V (2010) Tumor-­induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 32(6):790–802, doi:S1074-7613(10)00202-5 [pii]. 10.1016/j.immuni.2010.05.010

    Article  CAS  PubMed  Google Scholar 

  • McGrath JP, Capon DJ, Goeddel DV, Levinson AD (1984) Comparative biochemical properties of normal and activated human ras p21 protein. Nature 310(5979):644–649

    Article  CAS  PubMed  Google Scholar 

  • Milburn MV, Tong L, deVos AM, Brunger A, Yamaizumi Z, Nishimura S, Kim SH (1990) Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247(4945):939–945

    Article  CAS  PubMed  Google Scholar 

  • Minami S (1923) Experiments on the surviving carcinoma tissues. (Respiration and glycolysis). Biochem Z 142:334–350

    CAS  Google Scholar 

  • Miyamoto Y, Maitra A, Ghosh B, Zechner U, Argani P, Iacobuzio-Donahue CA, Sriuranpong V, Iso T, Meszoely IM, Wolfe MS, Hruban RH, Ball DW, Schmid RM, Leach SD (2003) Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 3(6):565–576. doi S1535610803001405 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Moodie SA, Willumsen BM, Weber MJ, Wolfman A (1993) Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260(5114):1658–1661

    Article  CAS  PubMed  Google Scholar 

  • Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, Au HJ, Murawa P, Walde D, Wolff RA, Campos D, Lim R, Ding K, Clark G, Voskoglou-Nomikos T, Ptasynski M, Parulekar W (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25(15):1960–1966, doi:JCO.2006.07.9525 [pii]. 10.1200/JCO.2006.07.9525

    Article  CAS  PubMed  Google Scholar 

  • Morris JP, Cano DA, Sekine S, Wang SC, Hebrok M (2010) Beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J Clin Invest 120(2):508–520, doi:40045 [pii]. 10.1172/JCI40045

    Article  CAS  PubMed  Google Scholar 

  • Moskalenko S, Henry DO, Rosse C, Mirey G, Camonis JH, White MA (2002) The exocyst is a Ral effector complex. Nat Cell Biol 4(1):66–72, doi:10.1038/ncb728. ncb728 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Moskalenko S, Tong C, Rosse C, Mirey G, Formstecher E, Daviet L, Camonis J, White MA (2003) Ral GTPases regulate exocyst assembly through dual subunit interactions. J Biol Chem 278(51):51743–51748, doi:10.1074/jbc.M308702200. M308702200 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Nassar N, Horn G, Herrmann C, Scherer A, McCormick F, Wittinghofer A (1995) The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature 375(6532):554–560. doi 10.1038/375554a0

    Article  CAS  PubMed  Google Scholar 

  • Navas C, Hernandez-Porras I, Schuhmacher AJ, Sibilia M, Guerra C, Barbacid M (2012) EGF receptor signaling is essential for k-ras oncogene-driven pancreatic ductal adenocarcinoma. Cancer Cell 22(3):318–330, doi:S1535-6108(12)00338-8 [pii]. 10.1016/j.ccr.2012.08.001

    Article  CAS  PubMed  Google Scholar 

  • Neesse A, Michl P, Frese KK, Feig C, Cook N, Jacobetz MA, Lolkema MP, Buchholz M, Olive KP, Gress TM, Tuveson DA (2011) Stromal biology and therapy in pancreatic cancer. Gut 60(6):861–868, doi:gut.2010.226092 [pii]. 10.1136/gut.2010.226092

    Article  PubMed  Google Scholar 

  • Niederau C, Ferrell LD, Grendell JH (1985) Caerulein-induced acute necrotizing pancreatitis in mice: protective effects of proglumide, benzotript, and secretin. Gastroenterology 88(5 Pt 1):1192–1204. doi S0016508585001457 [pii]

    CAS  PubMed  Google Scholar 

  • Nimnual AS, Yatsula BA, Bar-Sagi D (1998) Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science 279(5350):560–563

    Article  CAS  PubMed  Google Scholar 

  • Nolan-Stevaux O, Lau J, Truitt ML, Chu GC, Hebrok M, Fernandez-Zapico ME, Hanahan D (2009) GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation. Genes Dev 23(1):24–36, doi:23/1/24 [pii]. 10.1101/gad.1753809

    Article  CAS  PubMed  Google Scholar 

  • Ohnami S, Matsumoto N, Nakano M, Aoki K, Nagasaki K, Sugimura T, Terada M, Yoshida T (1999) Identification of genes showing differential expression in antisense K-ras-transduced pancreatic cancer cells with suppressed tumorigenicity. Cancer Res 59(21):5565–5571

    CAS  PubMed  Google Scholar 

  • Ohshio G, Saluja A, Leli U, Sengupta A, Steer ML (1989) Failure of a potent cholecystokinin antagonist to protect against diet-induced pancreatitis in mice. Pancreas 4(6):739–743

    Article  CAS  PubMed  Google Scholar 

  • Oliveira-Cunha M, Hadfield KD, Siriwardena AK, Newman W (2012) EGFR and KRAS mutational analysis and their correlation to survival in pancreatic and periampullary cancer. Pancreas 41(3):428–434, doi:10.1097/MPA.0b013e3182327a03. 00006676-201204000-00011 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Otto JC, Kim E, Young SG, Casey PJ (1999) Cloning and characterization of a mammalian prenyl protein-specific protease. J Biol Chem 274(13):8379–8382

    Article  CAS  PubMed  Google Scholar 

  • Parada LF, Tabin CJ, Shih C, Weinberg RA (1982) Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 297(5866):474–478

    Article  CAS  PubMed  Google Scholar 

  • Pasca di Magliano M, Biankin AV, Heiser PW, Cano DA, Gutierrez PJ, Deramaudt T, Segara D, Dawson AC, Kench JG, Henshall SM, Sutherland RL, Dlugosz A, Rustgi AK, Hebrok M (2007) Common activation of canonical Wnt signaling in pancreatic adenocarcinoma. PLoS One 2(11):e1155. doi 10.1371/journal.pone.0001155

    Article  PubMed  CAS  Google Scholar 

  • Patek CE, Arends MJ, Wallace WA, Luo F, Hagan S, Brownstein DG, Rose L, Devenney PS, Walker M, Plowman SJ, Berry RL, Kolch W, Sansom OJ, Harrison DJ, Hooper ML (2008a) Mutationally activated K-ras 4A and 4B both mediate lung carcinogenesis. Exp Cell Res 314(5):1105–1114, doi:S0014-4827(07)00533-2 [pii]. 10.1016/j.yexcr.2007.11.004

    Article  CAS  PubMed  Google Scholar 

  • Patek CE, Arends MJ, Rose L, Luo F, Walker M, Devenney PS, Berry RL, Lawrence NJ, Ridgway RA, Sansom OJ, Hooper ML (2008b) The pro-apoptotic K-Ras 4A proto-oncoprotein does not affect tumorigenesis in the ApcMin/+ mouse small intestine. BMC Gastroenterol 8:24, doi:1471-230X-8-24 [pii]. 10.1186/1471-230X-8-24

    Article  PubMed  CAS  Google Scholar 

  • Pells S, Divjak M, Romanowski P, Impey H, Hawkins NJ, Clarke AR, Hooper ML, Williamson DJ (1997) Developmentally-regulated expression of murine K-ras isoforms. Oncogene 15(15):1781–1786. doi 10.1038/sj.onc.1201354

    Article  CAS  PubMed  Google Scholar 

  • Pillinger MH, Volker C, Stock JB, Weissmann G, Philips MR (1994) Characterization of a plasma membrane-associated prenylcysteine-directed alpha carboxyl methyltransferase in human neutrophils. J Biol Chem 269(2):1486–1492

    CAS  PubMed  Google Scholar 

  • Plowman SJ, Williamson DJ, O'Sullivan MJ, Doig J, Ritchie AM, Harrison DJ, Melton DW, Arends MJ, Hooper ML, Patek CE (2003) While K-ras is essential for mouse development, expression of the K-ras 4A splice variant is dispensable. Mol Cell Biol 23(24):9245–9250

    Article  CAS  PubMed  Google Scholar 

  • Plowman SJ, Berry RL, Bader SA, Luo F, Arends MJ, Harrison DJ, Hooper ML, Patek CE (2006a) K-ras 4A and 4B are co-expressed widely in human tissues, and their ratio is altered in sporadic colorectal cancer. J Exp Clin Cancer Res 25(2):259–267

    CAS  PubMed  Google Scholar 

  • Plowman SJ, Arends MJ, Brownstein DG, Luo F, Devenney PS, Rose L, Ritchie AM, Berry RL, Harrison DJ, Hooper ML, Patek CE (2006b) The K-Ras 4A isoform promotes apoptosis but does not affect either lifespan or spontaneous tumor incidence in aging mice. Exp Cell Res 312(1):16–26, doi:S0014-4827(05)00460-X [pii]. 10.1016/j.yexcr.2005.10.004

    Article  CAS  PubMed  Google Scholar 

  • Prevot PP, Simion A, Grimont A, Colletti M, Khalaileh A, Van den Steen G, Sempoux C, Xu X, Roelants V, Hald J, Bertrand L, Heimberg H, Konieczny SF, Dor Y, Lemaigre FP, Jacquemin P (2012) Role of the ductal transcription factors HNF6 and Sox9 in pancreatic acinar-to-ductal metaplasia. Gut, doi:gutjnl-2011-300266 [pii]. 10.1136/gutjnl-2011-300266

    Google Scholar 

  • Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in cancer. Cancer Res 72(10):2457–2467, doi:72/10/2457 [pii]. 10.1158/0008-5472.CAN-11-2612

    Article  CAS  PubMed  Google Scholar 

  • Pulciani S, Santos E, Lauver AV, Long LK, Robbins KC, Barbacid M (1982) Oncogenes in human tumor cell lines: molecular cloning of a transforming gene from human bladder carcinoma cells. Proc Natl Acad Sci U S A 79(9):2845–2849

    Article  CAS  PubMed  Google Scholar 

  • Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D (2012) Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21(6):836–847, doi:S1535-6108(12)00166-3 [pii]. 10.1016/j.ccr.2012.04.024

    Article  CAS  PubMed  Google Scholar 

  • Qiu RG, Chen J, Kirn D, McCormick F, Symons M (1995) An essential role for Rac in Ras transformation. Nature 374(6521):457–459. doi 10.1038/374457a0

    Article  CAS  PubMed  Google Scholar 

  • Qiu W, Sahin F, Iacobuzio-Donahue CA, Garcia-Carracedo D, Wang WM, Kuo CY, Chen D, Arking DE, Lowy AM, Hruban RH, Remotti HE, Su GH (2011) Disruption of p16 and activation of Kras in pancreas increase ductal adenocarcinoma formation and metastasis in vivo. Oncotarget 2(11):862–873. doi 357 [pii]

    PubMed  Google Scholar 

  • Racker E, Resnick RJ, Feldman R (1985) Glycolysis and methylaminoisobutyrate uptake in rat-1 cells transfected with ras or myc oncogenes. Proc Natl Acad Sci USA 82(11):3535–3538

    Article  CAS  PubMed  Google Scholar 

  • Rangarajan A, Hong SJ, Gifford A, Weinberg RA (2004) Species- and cell type-specific requirements for cellular transformation. Cancer Cell 6(2):171–183, doi:10.1016/j.ccr.2004.07.009. S1535610804002053 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Reddy EP, Reynolds RK, Santos E, Barbacid M (1982) A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300(5888):149–152

    Article  CAS  PubMed  Google Scholar 

  • Repasky GA, Chenette EJ, Der CJ (2004) Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol 14(11):639–647, doi:S0962-8924(04)00265-X [pii]. 10.1016/j.tcb.2004.09.014

    Article  CAS  PubMed  Google Scholar 

  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70(3):401–410. doi 0092-­8674(92)90164-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD, Downward J (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370(6490):527–532. doi 10.1038/370527a0

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Das P, Waterfield MD, Ridley A, Downward J (1997) Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89(3):457–467. doi S0092-8674(00)80226-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ruggeri BA, Huang L, Wood M, Cheng JQ, Testa JR (1998) Amplification and overexpression of the AKT2 oncogene in a subset of human pancreatic ductal adenocarcinomas. Mol Carcinog 21(2):81–86. doi:10.1002/(SICI)1098-2744(199802)21:2<81::AID-MC1>3.0.CO;2-R [pii]

    Article  CAS  PubMed  Google Scholar 

  • Samuels Y, Diaz LA Jr, Schmidt-Kittler O, Cummins JM, Delong L, Cheong I, Rago C, Huso DL, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE (2005) Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7(6):561–573, doi:S1535-­6108(05)00160-1 [pii]. 10.1016/j.ccr.2005.05.014

    Article  CAS  PubMed  Google Scholar 

  • Santos E, Tronick SR, Aaronson SA, Pulciani S, Barbacid M (1982) T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB- and Harvey-­MSV transforming genes. Nature 298(5872):343–347

    Article  CAS  PubMed  Google Scholar 

  • Santos E, Martin-Zanca D, Reddy EP, Pierotti MA, Della Porta G, Barbacid M (1984) Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science 223(4637):661–664

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101, doi:307/5712/1098 [pii]. 10.1126/science.1106148

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Nakamura S, Kaziro Y (1987) Induction of neurite formation in PC12 cells by microinjection of proto-oncogenic Ha-ras protein preincubated with guanosine-5′-O-(3-thiotriphosphate). Mol Cell Biol 7(12):4553–4556

    CAS  PubMed  Google Scholar 

  • Schafer WR, Kim R, Sterne R, Thorner J, Kim SH, Rine J (1989) Genetic and pharmacological suppression of oncogenic mutations in ras genes of yeast and humans. Science 245(4916):379–385

    Article  CAS  PubMed  Google Scholar 

  • Schafer WR, Trueblood CE, Yang CC, Mayer MP, Rosenberg S, Poulter CD, Kim SH, Rine J (1990) Enzymatic coupling of cholesterol intermediates to a mating pheromone precursor and to the ras protein. Science 249(4973):1133–1139

    Article  CAS  PubMed  Google Scholar 

  • Scheffzek K, Ahmadian MR, Kabsch W, Wiesmuller L, Lautwein A, Schmitz F, Wittinghofer A (1997) The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277(5324):333–338

    Article  CAS  PubMed  Google Scholar 

  • Scheidig AJ, Burmester C, Goody RS (1999) The pre-hydrolysis state of p21(ras) in complex with GTP: new insights into the role of water molecules in the GTP hydrolysis reaction of ras-like proteins. Structure 7(11):1311–1324. doi st7b01 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Schlieman MG, Fahy BN, Ramsamooj R, Beckett L, Bold RJ (2003) Incidence, mechanism and prognostic value of activated AKT in pancreas cancer. Br J Cancer 89(11):2110–2115, doi:10.1038/sj.bjc.6601396. 6601396 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Scholl C, Frohling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY, Silver SJ, Tamayo P, Wadlow RC, Ramaswamy S, Dohner K, Bullinger L, Sandy P, Boehm JS, Root DE, Jacks T, Hahn WC, Gilliland DG (2009) Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 137(5):821–834, doi:S0092-8674(09)00316-X [pii]. 10.1016/j.cell.2009.03.017

    Article  CAS  PubMed  Google Scholar 

  • Scholz A, Heinze S, Detjen KM, Peters M, Welzel M, Hauff P, Schirner M, Wiedenmann B, Rosewicz S (2003) Activated signal transducer and activator of transcription 3 (STAT3) supports the malignant phenotype of human pancreatic cancer. Gastroenterology 125(3):891–905. doi S0016508503010643 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Schreiber AB, Libermann TA, Lax I, Yarden Y, Schlessinger J (1983) Biological role of epidermal growth factor-receptor clustering. Investigation with monoclonal anti-receptor antibodies. J Biol Chem 258(2):846–853

    CAS  PubMed  Google Scholar 

  • Schubbert S, Shannon K, Bollag G (2007a) Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7(4):295–308, doi nrc2109 [pii]. 10.1038/nrc2109

    Article  CAS  PubMed  Google Scholar 

  • Schubbert S, Bollag G, Shannon K (2007b) Deregulated Ras signaling in developmental disorders: new tricks for an old dog. Curr Opin Genet Dev 17(1):15–22, doi:S0959-437X(06)00239-5 [pii]. 10.1016/j.gde.2006.12.004

    Article  CAS  PubMed  Google Scholar 

  • Scolnick EM, Papageorge AG, Shih TY (1979) Guanine nucleotide-binding activity as an assay for src protein of rat-derived murine sarcoma viruses. Proc Natl Acad Sci U S A 76(10):5355–5359

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Zangen DH, Reitz P, Taneja M, Lissauer ME, Miller CP, Weir GC, Habener JF, Bonner-­Weir S (1999) The homeodomain protein IDX-1 increases after an early burst of proliferation during pancreatic regeneration. Diabetes 48(3):507–513

    Article  CAS  PubMed  Google Scholar 

  • Shi C, Hong SM, Lim P, Kamiyama H, Khan M, Anders RA, Goggins M, Hruban RH, Eshleman JR (2009) KRAS2 mutations in human pancreatic acinar-ductal metaplastic lesions are limited to those with PanIN: implications for the human pancreatic cancer cell of origin. Mol Cancer Res 7(2):230–236, doi:1541-7786.MCR-08-0206 [pii]. 10.1158/1541-7786.MCR-08-0206

    Article  CAS  PubMed  Google Scholar 

  • Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba II, Fong KM, Lee H, Toyooka S, Shimizu N, Fujisawa T, Feng Z, Roth JA, Herz J, Minna JD, Gazdar AF (2005) Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 97(5):339–346, doi:97/5/339 [pii]. 10.1093/jnci/dji055

    Article  CAS  PubMed  Google Scholar 

  • Shih C, Weinberg RA (1982) Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell 29(1):161–169. doi 0092-8674(82)90100-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Shih TY, Papageorge AG, Stokes PE, Weeks MO, Scolnick EM (1980) Guanine nucleotide-­binding and autophosphorylating activities associated with the p21src protein of Harvey murine sarcoma virus. Nature 287(5784):686–691

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K, Goldfarb M, Perucho M, Wigler M (1983a) Isolation and preliminary characterization of the transforming gene of a human neuroblastoma cell line. Proc Natl Acad Sci U S A 80(2):383–387

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K, Goldfarb M, Suard Y, Perucho M, Li Y, Kamata T, Feramisco J, Stavnezer E, Fogh J, Wigler MH (1983b) Three human transforming genes are related to the viral ras oncogenes. Proc Natl Acad Sci U S A 80(8):2112–2116

    Article  CAS  PubMed  Google Scholar 

  • Silverman M, Ilardi C, Bank S, Kranz V, Lendvai S (1989) Effects of the cholecystokinin receptor antagonist L-364,718 on experimental pancreatitis in mice. Gastroenterology 96(1):186–192. doi S0016508589000004 [pii]

    CAS  PubMed  Google Scholar 

  • Singh A, Greninger P, Rhodes D, Koopman L, Violette S, Bardeesy N, Settleman J (2009) A gene expression signature associated with "K-Ras addiction" reveals regulators of EMT and tumor cell survival. Cancer Cell 15(6):489–500, doi:S1535-6108(09)00111-1 [pii]. 10.1016/j.ccr.2009.03.022

    Article  CAS  PubMed  Google Scholar 

  • Siveke JT, Einwachter H, Sipos B, Lubeseder-Martellato C, Kloppel G, Schmid RM (2007) Concomitant pancreatic activation of Kras(G12D) and Tgfa results in cystic papillary neoplasms reminiscent of human IPMN. Cancer Cell 12(3):266–279, doi:S1535-6108(07)00231-0 [pii]. 10.1016/j.ccr.2007.08.002

    Article  CAS  PubMed  Google Scholar 

  • Siveke JT, Lubeseder-Martellato C, Lee M, Mazur PK, Nakhai H, Radtke F, Schmid RM (2008) Notch signaling is required for exocrine regeneration after acute pancreatitis. Gastroenterology 134(2):544–555, doi:S0016-5085(07)01993-2 [pii]. 10.1053/j.gastro.2007.11.003

    Article  CAS  PubMed  Google Scholar 

  • Soh J, Okumura N, Lockwood WW, Yamamoto H, Shigematsu H, Zhang W, Chari R, Shames DS, Tang X, MacAulay C, Varella-Garcia M, Vooder T, Wistuba II, Lam S, Brekken R, Toyooka S, Minna JD, Lam WL, Gazdar AF (2009) Oncogene mutations, copy number gains and mutant allele specific imbalance (MASI) frequently occur together in tumor cells. PLoS One 4(10):e7464. doi 10.1371/journal.pone.0007464

    Article  PubMed  CAS  Google Scholar 

  • Stanger BZ, Stiles B, Lauwers GY, Bardeesy N, Mendoza M, Wang Y, Greenwood A, Cheng KH, McLaughlin M, Brown D, Depinho RA, Wu H, Melton DA, Dor Y (2005) Pten constrains centroacinar cell expansion and malignant transformation in the pancreas. Cancer Cell 8(3):185–195, doi:S1535-6108(05)00236-9 [pii]. 10.1016/j.ccr.2005.07.015

    Article  CAS  PubMed  Google Scholar 

  • Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15(4):356–362. doi 10.1038/ng0497-356

    Article  CAS  PubMed  Google Scholar 

  • Swartz MA, Iida N, Roberts EW, Sangaletti S, Wong MH, Yull FE, Coussens LM, DeClerck YA (2012) Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res 72(10):2473–2480, doi:0008-5472.CAN-12-0122 [pii]. 10.1158/0008-5472.CAN-12-0122

    Article  CAS  PubMed  Google Scholar 

  • Sweet RW, Yokoyama S, Kamata T, Feramisco JR, Rosenberg M, Gross M (1984) The product of ras is a GTPase and the T24 oncogenic mutant is deficient in this activity. Nature 311(5983):273–275

    Article  CAS  PubMed  Google Scholar 

  • Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, Scolnick EM, Dhar R, Lowy DR, Chang EH (1982) Mechanism of activation of a human oncogene. Nature 300(5888):143–149

    Article  CAS  PubMed  Google Scholar 

  • Tamanoi F, Walsh M, Kataoka T, Wigler M (1984) A product of yeast RAS2 gene is a guanine nucleotide binding protein. Proc Natl Acad Sci U S A 81(22):6924–6928

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Fukamachi K, Futakuchi M, Alexander DB, Long N, Tamamushi S, Minami K, Seino S, Ohara H, Joh T, Tsuda H (2010) Mature acinar cells are refractory to carcinoma development by targeted activation of Ras oncogene in adult rats. Cancer Sci 101(2):341–346, doi:CAS1410 [pii]. 10.1111/j.1349-7006.2009.01410.x

    Article  CAS  PubMed  Google Scholar 

  • Taparowsky E, Suard Y, Fasano O, Shimizu K, Goldfarb M, Wigler M (1982) Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature 300(5894):762–765

    Article  CAS  PubMed  Google Scholar 

  • Temeles GL, Gibbs JB, D'Alonzo JS, Sigal IS, Scolnick EM (1985) Yeast and mammalian ras proteins have conserved biochemical properties. Nature 313(6004):700–703

    Article  CAS  PubMed  Google Scholar 

  • Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY, Qi YP, Gysin S, Fernandez-del Castillo C, Yajnik V, Antoniu B, McMahon M, Warshaw AL, Hebrok M (2003) Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425(6960):851–856, doi:10.1038/nature02009. nature02009 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Tian H, Callahan CA, DuPree KJ, Darbonne WC, Ahn CP, Scales SJ, de Sauvage FJ (2009) Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc Natl Acad Sci U S A 106(11):4254–4259, doi:0813203106 [pii]. 10.1073/pnas.0813203106

    Article  CAS  PubMed  Google Scholar 

  • To MD, Wong CE, Karnezis AN, Del Rosario R, Di Lauro R, Balmain A (2008) Kras regulatory elements and exon 4A determine mutation specificity in lung cancer. Nat Genet 40(10):1240–1244, doi:ng.211 [pii]. 10.1038/ng.211

    Article  CAS  PubMed  Google Scholar 

  • Tobita K, Kijima H, Dowaki S, Kashiwagi H, Ohtani Y, Oida Y, Yamazaki H, Nakamura M, Ueyama Y, Tanaka M, Inokuchi S, Makuuchi H (2003) Epidermal growth factor receptor expression in human pancreatic cancer: significance for liver metastasis. Int J Mol Med 11(3):305–309

    CAS  PubMed  Google Scholar 

  • Tong LA, de Vos AM, Milburn MV, Kim SH (1991) Crystal structures at 2.2 A resolution of the catalytic domains of normal ras protein and an oncogenic mutant complexed with GDP. J Mol Biol 217(3):503–516

    Article  CAS  PubMed  Google Scholar 

  • Trahey M, McCormick F (1987) A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238(4826):542–545

    Article  CAS  PubMed  Google Scholar 

  • Tuveson DA, Zhu L, Gopinathan A, Willis NA, Kachatrian L, Grochow R, Pin CL, Mitin NY, Taparowsky EJ, Gimotty PA, Hruban RH, Jacks T, Konieczny SF (2006) Mist1-KrasG12D knock-in mice develop mixed differentiation metastatic exocrine pancreatic carcinoma and hepatocellular carcinoma. Cancer Res 66(1):242–247, doi:66/1/242 [pii]. 10.1158/0008-5472.CAN-05-2305

    Article  CAS  PubMed  Google Scholar 

  • Tzeng CW, Frolov A, Frolova N, Jhala NC, Howard JH, Vickers SM, Buchsbaum DJ, Heslin MJ, Arnoletti JP (2007) EGFR genomic gain and aberrant pathway signaling in pancreatic cancer patients. J Surg Res 143(1):20–26, doi:S0022-4804(07)00315-0 [pii]. 10.1016/j.jss.2007.01.051

    Article  CAS  PubMed  Google Scholar 

  • Ushiro H, Cohen S (1980) Identification of phosphotyrosine as a product of epidermal growth factor-activated protein kinase in A-431 cell membranes. J Biol Chem 255(18):8363–8365

    CAS  PubMed  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033, doi:324/5930/1029 [pii]. 10.1126/science.1160809

    Article  CAS  PubMed  Google Scholar 

  • Vincent DF, Yan KP, Treilleux I, Gay F, Arfi V, Kaniewski B, Marie JC, Lepinasse F, Martel S, Goddard-Leon S, Iovanna JL, Dubus P, Garcia S, Puisieux A, Rimokh R, Bardeesy N, Scoazec JY, Losson R, Bartholin L (2009) Inactivation of TIF1gamma cooperates with Kras to induce cystic tumors of the pancreas. PLoS Genet 5(7):e1000575. doi 10.1371/journal.pgen.1000575

    Article  PubMed  CAS  Google Scholar 

  • Vojtek AB, Hollenberg SM, Cooper JA (1993) Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74(1):205–214. doi 0092-8674(93)90307-C [pii]

    Article  CAS  PubMed  Google Scholar 

  • Wahlstrom AM, Cutts BA, Liu M, Lindskog A, Karlsson C, Sjogren AK, Andersson KM, Young SG, Bergo MO (2008) Inactivating Icmt ameliorates K-RAS-induced myeloproliferative disease. Blood 112(4):1357–1365, doi:blood-2007-06-094060 [pii]. 10.1182/blood-2007-06-094060

    Article  CAS  PubMed  Google Scholar 

  • Walker EH, Perisic O, Ried C, Stephens L, Williams RL (1999) Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature 402(6759):313–320. doi 10.1038/46319

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Abbruzzese JL, Evans DB, Larry L, Cleary KR, Chiao PJ (1999) The nuclear factor-­kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res 5(1):119–127

    CAS  PubMed  Google Scholar 

  • Warburg O, Posener K, Negelein E (1924) On the metabolism of carcinoma cells. Biochem Z 152:309–344

    CAS  Google Scholar 

  • Warne PH, Viciana PR, Downward J (1993) Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364(6435):352–355. doi 10.1038/364352a0

    Article  CAS  PubMed  Google Scholar 

  • Watanabe O, Baccino FM, Steer ML, Meldolesi J (1984) Supramaximal caerulein stimulation and ultrastructure of rat pancreatic acinar cell: early morphological changes during development of experimental pancreatitis. Am J Physiol 246(4 Pt 1):G457–G467

    CAS  PubMed  Google Scholar 

  • Whyte DB, Kirschmeier P, Hockenberry TN, Nunez-Oliva I, James L, Catino JJ, Bishop WR, Pai JK (1997) K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem 272(22):14459–14464

    Article  CAS  PubMed  Google Scholar 

  • Willemer S, Elsasser HP, Kern HF, Adler G (1987) Tubular complexes in cerulein- and oleic acid-­induced pancreatitis in rats: glycoconjugate pattern, immunocytochemical, and ultrastructural findings. Pancreas 2(6):669–675

    Article  CAS  PubMed  Google Scholar 

  • Willumsen BM, Norris K, Papageorge AG, Hubbert NL, Lowy DR (1984) Harvey murine sarcoma virus p21 ras protein: biological and biochemical significance of the cysteine nearest the carboxy terminus. EMBO J 3(11):2581–2585

    CAS  PubMed  Google Scholar 

  • Wolfman A, Macara IG (1990) A cytosolic protein catalyzes the release of GDP from p21ras. Science 248(4951):67–69

    Article  CAS  PubMed  Google Scholar 

  • Wright LP, Philips MR (2006) Thematic review series: lipid posttranslational modifications. CAAX modification and membrane targeting of Ras. J Lipid Res 47(5):883–891, doi:R600004-­JLR200 [pii]. 10.1194/jlr.R600004-JLR200

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Tomita Y, Hoshida Y, Morooka T, Nagano H, Dono K, Umeshita K, Sakon M, Ishikawa O, Ohigashi H, Nakamori S, Monden M, Aozasa K (2004) Prognostic significance of activated Akt expression in pancreatic ductal adenocarcinoma. Clin Cancer Res 10(8):2846–2850

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel JM, Dell'antonio G, Mautner J, Tonon G, Haigis M, Shirihai OS, Doglioni C, Bardeesy N, Kimmelman AC (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25(7):717–729, doi:gad.2016111 [pii]. 10.1101/gad.2016111

    Article  CAS  PubMed  Google Scholar 

  • Yarden Y, Schlessinger J (1987a) Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor. Biochemistry 26(5):1443–1451

    Article  CAS  PubMed  Google Scholar 

  • Yarden Y, Schlessinger J (1987b) Self-phosphorylation of epidermal growth factor receptor: evidence for a model of intermolecular allosteric activation. Biochemistry 26(5):1434–1442

    Article  CAS  PubMed  Google Scholar 

  • Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL, Yan H, Wang W, Chen S, Viale A, Zheng H, Paik JH, Lim C, Guimaraes AR, Martin ES, Chang J, Hezel AF, Perry SR, Hu J, Gan B, Xiao Y, Asara JM, Weissleder R, Wang YA, Chin L, Cantley LC, DePinho RA (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149(3):656–670, doi:S0092-­8674(12)00352-2 [pii]. 10.1016/j.cell.2012.01.058

    Article  CAS  PubMed  Google Scholar 

  • Yip-Schneider MT, Lin A, Barnard D, Sweeney CJ, Marshall MS (1999) Lack of elevated MAP kinase (Erk) activity in pancreatic carcinomas despite oncogenic K-ras expression. Int J Oncol 15(2):271–279

    CAS  PubMed  Google Scholar 

  • Yip-Schneider MT, Lin A, Marshall MS (2001) Pancreatic tumor cells with mutant K-ras suppress ERK activity by MEK-dependent induction of MAP kinase phosphatase-2. Biochem Biophys Res Commun 280(4):992–997, doi:10.1006/bbrc.2001.4243. S0006-291X(01)94243-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Shiraki N, Baba H, Goto M, Fujiwara S, Kume K, Kume S (2008) Expression patterns of epiplakin1 in pancreas, pancreatic cancer and regenerating pancreas. Genes Cells 13(7):667–678, doi:GTC1196 [pii]. 10.1111/j.1365-2443.2008.01196.x

    Article  CAS  PubMed  Google Scholar 

  • Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H, Schmidt K, Willson JK, Markowitz S, Zhou S, Diaz LA Jr, Velculescu VE, Lengauer C, Kinzler KW, Vogelstein B, Papadopoulos N (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325(5947):1555–1559, doi:1174229 [pii]. 10.1126/science.1174229

    Article  CAS  PubMed  Google Scholar 

  • Zhang XF, Settleman J, Kyriakis JM, Takeuchi-Suzuki E, Elledge SJ, Marshall MS, Bruder JT, Rapp UR, Avruch J (1993) Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 364(6435):308–313. doi 10.1038/364308a0

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Wang Y, Vikis HG, Johnson L, Liu G, Li J, Anderson MW, Sills RC, Hong HL, Devereux TR, Jacks T, Guan KL, You M (2001) Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nat Genet 29(1):25–33, doi:10.1038/ng721. ng721 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J (2006) An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125(6):1137–1149, doi:S0092-­8674(06)00584-8 [pii]. 10.1016/j.cell.2006.05.013

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Capello M, Fredolini C, Piemonti L, Liotta LA, Novelli F, Petricoin EF (2011) Proteomic analysis of pancreatic ductal adenocarcinoma cells reveals metabolic alterations. J Proteome Res 10(4):1944–1952. doi 10.1021/pr101179t

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Capello M, Fredolini C, Racanicchi L, Piemonti L, Liotta LA, Novelli F, Petricoin EF (2012) Proteomic analysis reveals Warburg effect and anomalous metabolism of glutamine in pancreatic cancer cells. J Proteome Res 11(2):554–563. doi 10.1021/pr2009274

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Kleeff J, Friess H, Wang L, Zimmermann A, Yarden Y, Buchler MW, Korc M (2000) Epiregulin is up-regulated in pancreatic cancer and stimulates pancreatic cancer cell growth. Biochem Biophys Res Commun 273(3):1019–1024, doi:10.1006/bbrc.2000.3033. S0006-­291X(00)93033-X [pii]

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dafna Bar-Sagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Court, H., Philips, M.R., Bar-Sagi, D. (2013). The Biology of K-Ras Signaling Pathways in Pancreatic Cancer. In: Simeone, D., Maitra, A. (eds) Molecular Genetics of Pancreatic Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6549-2_5

Download citation

Publish with us

Policies and ethics