Skip to main content

Principles of Image Processing and Feature Recognition Applied to Full-Field Measurements

  • Conference paper
  • First Online:
Special Topics in Structural Dynamics, Volume 6

Abstract

Recent advances in measurement techniques such as digital image correlation (DIC) allow full-field maps (images) of vibration shapes or strain to be obtained easily. This generally results in the acquisition of large volumes of highly redundant data. Fortunately, image decomposition offers feasible techniques for data condensation while retaining essential information. The selection, or construction, of decomposition basis (kernel) functions is essential to data reduction and has been shown to produce descriptions of the full-field image capable of accurate reproduction of the original data, very efficiently. Image descriptors are robust to measurement noise. Classical orthogonal kernel functions include Fourier series, wavelets and Legendre, Zernike and Tchebichef polynomials, defined on either rectangular or circular domains. In practice full-field measurements of the engineering components are usually non-planar within irregular domains, so that the classical kernel functions are not immediately applicable. This problem may be addressed using a methodology based on adaptive geometric moment descriptors (AGMD) as will be demonstrated in a series of illustrative examples. Model updating from full-field measurements and modal testing in the shape-feature domain are enabled with attendant advantages of the full-field data over measurements taken with a limited number of sensors at discrete locations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sutton MA, Cheng Mingqi, Peters WH, Chao YJ, McNeill SR (1986) Application of an optimized digital correlation method to planar deformation analysis. Image Vis Comput 4(3):143–150

    Google Scholar 

  2. Sutton MA, Wolters WF, Peters WH, Ranson WF, McNeill SR (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3):133–139

    Article  Google Scholar 

  3. Tiwari V, Sutton MA, McNeill SR, Shaowen Xu, Xiaomin Deng, Fourney WL, Bretall D (2009) Application of 3D image correlation for full-field transient plate deformation measurements during blast loading. Int J Impact Eng 36(6):862–874

    Google Scholar 

  4. Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39(3):217–226

    Article  Google Scholar 

  5. Bay BK (2008) Methods and applications of digital volume correlation. J Strain Anal Eng Des 43(8):745–760

    Article  Google Scholar 

  6. Forsberg F, Sjo M, Mooser R, Hack E, Wyss P (2010) Full three-dimensional strain measurements on wood exposed to three-point bending: analysis by use of digital volume correlation applied to synchrotron radiation micro-computed tomography image data. Strain 46:47–60

    Article  Google Scholar 

  7. Nurse AD, Patterson ES (1990) Photoelastic technique to predict the direction of edge crack extension using blunt cracks. Int J Mech Sci 32:253–264

    Article  Google Scholar 

  8. Patterson EA, Wang ZF (1991) Towards full field automated photoelastic analysis of complex components. Strain 27(2):49–53

    Article  Google Scholar 

  9. Patterson EA (1988) Automated photoelastic analysis. Strain 24(1):15–20

    Article  Google Scholar 

  10. Pedrini G, Osten W, Gusev ME (2006) High-speed digital holographic interferometry for vibration measurement. Appl Opt 45(15):3456

    Article  Google Scholar 

  11. Whelan MP, Albrecht D, Hack E, Patterson EA (2008) Calibration of a speckle interferometry full-field strain measurement system. Strain 44(2):180–190

    Article  Google Scholar 

  12. Dulieu-Barton JM, Stanley P (1998) Development and applications of thermoelastic stress analysis. J Strain Anal Eng Des 33(2):93–104

    Article  Google Scholar 

  13. Pitarresi G, Patterson EA (2003) A review of the general theory of thermoelastic stress analysis. J Strain Anal Eng Des 38:405–417

    Article  Google Scholar 

  14. Antonini M, Barlaud M, Mathieu P, Daubechies I (1992) Image coding using wavelet transform. IEEE Trans Image Process 1(2):205–220

    Article  Google Scholar 

  15. Daubechies I (1992) Ten lectures on wavelets. SIAM: Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  16. Mallat SG, Hwang WL (1992) Singularity detection and processing with wavelets. IEEE Trans Info Theory 38(2):617–643

    Article  MathSciNet  MATH  Google Scholar 

  17. Proakis JG, Manolakis KK (2006) Digital signal processing, principles, algorithms, and applications. Prentice Hall, Upper Saddle River

    Google Scholar 

  18. Donoho DL, Vetterli M, DeVore RA, Daubechies I (1998) Data compression and harmonic analysis. IEEE Trans Info Theory 44(6):2435–2476

    Article  MathSciNet  MATH  Google Scholar 

  19. Candès EJ, Donoho DL (1999) Ridgelets: a key to higher-dimensional intermittency? Philos Trans R Soc A Math Phys Eng Sci 357(1760):2495–2509

    Article  MATH  Google Scholar 

  20. Candès EJ, Donoho DL (1999) Curvelets: a surprisingly effective nonadaptive representation for objects with edges. In: Schumaker LL et al (eds) Curves and surfaces. Vanderbilt University Press, Nashville, pp 1–10

    Google Scholar 

  21. Candès EJ, Donoho DL (2004) New tight frames of curvelets and optimal representations of objects with piecewiseC2 singularities. Commun Pure Appl Math 57(2):219–266

    Article  MATH  Google Scholar 

  22. Do MN, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 14(12):2091–2106

    Article  MathSciNet  Google Scholar 

  23. Meyer FG, Coifman RR (1997) Brushlets: a tool for directional image analysis and image compression. Appl Comput Harmon Anal 187(4):147–187

    Article  MathSciNet  Google Scholar 

  24. Hosny KM (2011) Image representation using accurate orthogonal Gegenbauer moments. Pattern Recognit Lett 32:795–804

    Article  Google Scholar 

  25. Hosny KM (2012) Fast computation of accurate Gaussian-Hermite moments for image processing applications. Digit Signal Process 1:1–10

    MathSciNet  Google Scholar 

  26. Ming-Kuei Hu (1962) Visual pattern recognition by moment invariants. IEEE Trans Info Theory 8(2):179–187

    Google Scholar 

  27. Mukundan R, Ong SH, Lee PA (2001) Image analysis by Tchebichef moments. IEEE Trans Image Process 10(9):1357–1364

    Article  MathSciNet  MATH  Google Scholar 

  28. Teague MR (1980) Image analysis via the general theory of moments. J Opt Soc Am 70(8):920

    Article  MathSciNet  Google Scholar 

  29. Pew-Thian Yap, Paramesran R, Seng-Huat Ong (2003) Image analysis by Krawtchouk moments. IEEE Trans Image Process 12(11):1367–1377

    Google Scholar 

  30. Pew-Thian Yap, Paramesran R, Seng-Huat Ong (2007) Image analysis using Hahn moments. IEEE Trans Pattern Anal Mach Intell 29(11):2057–2062

    Google Scholar 

  31. Hongqing Zhu, Huazhong Shu, Jian Zhou, Limin Luo, Coatrieux JL (2007) Image analysis by discrete orthogonal dual Hahn moments. Pattern Recognit Lett 28(13):1688–1704

    Google Scholar 

  32. Zhu H, Shu H, Liang J, Luo L, Coatrieux J (2007) Image analysis by discrete orthogonal Racah moments. Signal Process 87(4):687–708

    Article  MATH  Google Scholar 

  33. Desbrun M, Meyer M, Alliez P (2002) Intrinsic parameterizations of surface meshes. Comput Graph Forum 21:209–218

    Article  Google Scholar 

  34. Floater MS, Hormann K (2005) Surface parameterization: a tutorial and survey. In: Dodgson NA, Floater MS, Sabin MA (eds) Advances in multiresolution for geometric modelling. Springer, Heidelberg, pp 157–186

    Chapter  Google Scholar 

  35. Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York

    MATH  Google Scholar 

  36. Weizhuo Wang, Mottershead JE, Mares C (2009) Mode-shape recognition and finite element model updating using the Zernike moment descriptor. Mech Syst Signal Process 23(7):2088–2112

    Google Scholar 

  37. Weizhuo Wang, Mottershead JE, Sebastian CM, Patterson EA (2011) Shape features and finite element model updating from full-field strain data. Int J Solids Struct 48(11–12):1644–1657

    Google Scholar 

  38. Weizhuo Wang, Mottershead JE, Siebert T, Pipino A (2012) Frequency response functions of shape features from full-field vibration measurements using digital image correlation. Mech Syst Signal Process 28:333–347

    Google Scholar 

  39. Mallat SG, Zhang Z (1993) Matching pursuits with time-frequency dictionaries. IEEE Trans Signal Process 41(12):3397–3415

    Article  MATH  Google Scholar 

  40. Persoon E, King-Sun Fu (1977) Shape discrimination using fourier descriptors. IEEE Trans Syst Man Cybern 7(3):170–179

    Google Scholar 

  41. Yunlong Sheng, Lixin Shen (1994) Orthogonal Fourier-Mellin moments for invariant pattern recognition. JOSA A 11(6):1748–1757

    Google Scholar 

  42. Le E, Mallat SG (2005) Sparse geometric image representations with bandelets. IEEE Trans Image Process 14(4):423–438

    Article  MathSciNet  Google Scholar 

  43. Koekoek R, Swarttouw RF (1998) The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Technical report No. 98-17

    Google Scholar 

  44. Rubinstein R, Bruckstein AM, Elad M (2010) Dictionaries for sparse representation modeling. Proc IEEE 98(6):1045–1057

    Article  Google Scholar 

  45. Daubechies I (1988) Time-frequency localization operators: a geometric phase space approach. IEEE Trans Info Theory 34(4):605–612

    Article  MathSciNet  MATH  Google Scholar 

  46. Chen SS, Donoho DL, Saunders MA (1998) Atomic decomposition by basis pursuit. SIAM J Sci Comput 20(1):33

    Article  MathSciNet  Google Scholar 

  47. Coifman RR, Wickerhauser MV (1992) Entropy-based algorithms for best basis selection. IEEE Trans Info Theory 38(2):713–718

    Article  MATH  Google Scholar 

Download references

Acknowledgement

The authors wish to acknowledge the support of EC FP7 project ADVISE (Advanced Dynamic Validations using Integrated Simulation and Experimentation) -- grant no. 218595. Several figures and tables were reprinted from references [37] and [38] with permission from Elsevier. Several figures and tables were reprinted from: W. Wang and J.E. Mottershead, Adaptive moment descriptors for full-field strain and displacement measurements, Journal of Strain Analysis in Engineering Design, 48(1), 2013, 16–35 (published by SAGE)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Mottershead .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Mottershead, J.E., Wang, W. (2013). Principles of Image Processing and Feature Recognition Applied to Full-Field Measurements. In: Allemang, R., De Clerck, J., Niezrecki, C., Wicks, A. (eds) Special Topics in Structural Dynamics, Volume 6. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6546-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6546-1_45

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6545-4

  • Online ISBN: 978-1-4614-6546-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics