Skip to main content

Ranking Constituents of Coupled Models for Improved Performance

  • Conference paper
  • First Online:
Topics in Experimental Dynamic Substructuring, Volume 2

Abstract

In partitioned analysis, constituent models representing different scales or physics are routinely coupled to simulate complex physical systems. Such constituent models are invariably imperfect and thus, yield a degree of disagreement with reality, known as model form error. This error propagates through coupling interfaces and degrades the accuracy of the coupled system. To efficiently improve the coupled system, resources must be allocated to systematically improve the constituent models. This study proposes a tool and an associated metric that exploits the availability of experimental data to prioritize constituent models. This metric is useful in tracing the error of coupled systems to their origins and to quantify the contribution of constituent error to the overall error of coupled systems. The proposed metric is used to rank constituents based on (i) the relative model form error of the constituents, (ii) the sensitivity of the model form error of the coupled system to the model form error in the constituents, and (iii) the cost to improve their performance. The applicability of the proposed metric is demonstrated through a proof-of-concept structural example, by coupling individual frame elements to model a portal frame. Coupling and uncertainty inference of the inexact constituent models are achieved using optimization, where both separate-effect and integral-effect experiments are employed to train the model form error of the constituents and coupled system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lieber M, Wolke R (2008) Optimizing the coupling in parallel air quality model systems. Environ Model Softw 23:235–243

    Article  Google Scholar 

  2. Bunya S, Dietrich JC, Westerink JJ, Ebersole BA, Smith JM, Atkinson JH, Jensen R, Resio DT, Luettich RA, Dawson C, Cardone VJ, Cox AT, Powell MD, Westerink HJ, Roberts HJ (2010) A high resolution coupled riverine flow, tide, wind, wind wave and storm surge model for Southern Louisiana and Mississippi: part I—model development and validation. Mon Weather Rev 138:345–377

    Article  Google Scholar 

  3. Dietrich JC, Bunya S, Westerink JJ, Ebersole BA, Smith JM, Atkinson JH, Jensen R, Resio DT, Luettich RA, Dawson C, Cardone VJ, Cox AT, Powell MD, Westerink HJ, Roberts HJ (2010) A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for Southern Louisiana and Mississippi. Part II: synoptic description and analysis of hurricanes Katrina and Rita. Mon Weather Rev 138:378–404

    Article  Google Scholar 

  4. Schneidewind NF (1991) Setting maintenance quality objectives and prioritizing maintenance work by using quality metrics. Proceedings of the conference on software maintenance, Sorrento, Italy, pp 240–249

    Google Scholar 

  5. Menzies T, Greenwald J, Frank A (2007) Data mining static code attributes to learn defect predictors. IEEE Trans Softw Eng 33(1):2–13

    Article  Google Scholar 

  6. Turhan B, Kocak G, Bener A (2009) Data mining source code for locating software bugs: A case study in telecommunication industry. Expert Syst Appl 36:9986–9990

    Article  Google Scholar 

  7. Melouk SH, Raja U, Keskin BB (2010) Managing resource allocation and task prioritization decisions in large scale virtual collaborative development projects. Inf Resour Manage J 23(2):53–76

    Article  MATH  Google Scholar 

  8. Ray M, Kumawat KL, Mohapatra DP (2011) Source code prioritization using forward slicing for exposing critical elements in a program. J Comput Sci Technol 26(2):314–327

    Article  Google Scholar 

  9. Alvin KF, Reese GM (2000) A plan for structural dynamics code and model verification and validation. Proceedings of the 18th international modal analysis conference—IMAC XVIII, San Antonio TX, pp 342–348

    Google Scholar 

  10. Kumar M, Ghoniem AF (2012) Multiphysics simulations of entrained flow gasification. Part I: validating the nonreacting flow solver and the particle turbulent dispersion model. Energy Fuel 26:451–463

    Article  Google Scholar 

  11. Kumar M, Ghoniem AF (2012) Multiphysics simulations of entrained flow gasification. Part II: constructing and validating the overall model. Energy Fuel 26:464–479

    Article  Google Scholar 

  12. Döscher R, Willén U, Jones C, Rutgersson A, Meier HEM, Hansson U, Graham LP (2002) The development of the regional coupled ocean-atmosphere model RCAO. Boreal Environ Res 7:183–192

    Google Scholar 

  13. Li Y, Kinzelbach W, Zhou J, Cheng GD, Li X (2012) Modelling irrigated maize with a combination of coupled-model simulation and uncertainty analysis, in the northwest of China. Hydrol Earth Syst Sci 16:1465–1480

    Article  Google Scholar 

  14. Terejanu G, Oliver T, Simmons C (2011) Application of predictive model selection to coupled models. Proceedings of the world congress on engineering and computer science 2011, vol II, WCECS 2011, San Francisco, USA

    Google Scholar 

  15. Hegenderfer J, Atamturktur S (2013) Prioritization of code development efforts in partitioned analysis. Comput-Aided Civ Inf Eng 28(4):289–306

    Google Scholar 

  16. Atamturktur S, Farajpour I (2012) Prioritization of code development efforts in partitioned analysis of coupled systems. Struct Eng Mech (under review)

    Google Scholar 

  17. Matthies HG, Niekamp R, Steindorf J (2006) Algorithms for strong coupling procedures. Comput Methods Appl Mech Eng 195:2028–2049

    Article  MathSciNet  MATH  Google Scholar 

  18. Matthies HG, Steindorf J (2002) Fully coupled fluid-structure interaction using weak coupling. Proc Appl Math Mech 1(1):37–38

    Article  MATH  Google Scholar 

  19. Matthies HG, Steindorf J (2003) Partitioned strong coupling algorithms for fluid-structure interaction. Comput Struct 81:805–812

    Article  Google Scholar 

  20. Fernandez MA, Moubachir M (2005) A Newton method using exact jacobians for solving fluid–structure coupling. Comput Struct 83:127–142

    Article  Google Scholar 

  21. Joosten MM, Dettmer WG, Peric D (2009) Analysis of the block Gauss–Seidel solution procedure for a strongly coupled model problem with reference to fluid–structure interaction. Int J Numer Meth Eng 78:757–778

    Article  MathSciNet  MATH  Google Scholar 

  22. Farajpour I, Atamturktur S (2012) Optimization-based strong coupling procedure for partitioned analysis. ASCE J Comput Civ Eng 26(5):648–660

    Article  Google Scholar 

  23. Higdon D, Gattiker J, Williams B, Rightley M (2007) Computer model validation using high-dimensional outputs. In: Bernardo J, Bayarri MJ, Berger JO, Dawid AP, Heckerman D, Smith AFM, West M (eds) Bayesian statistics, vol 8. Oxford University Press, Oxford, UK

    Google Scholar 

  24. Higdon D, Nakhleh C, Gattiker J, Williams B (2008) A Bayesian calibration approach to the thermal problem. Comput Method Appl Mech Eng 197(29–32):2431–2441

    Article  MATH  Google Scholar 

  25. Atkinson K, Han W (2009) Theoretical numerical analysis: a functional analysis framework, 3rd edn. Springer, New York, pp 116–118

    MATH  Google Scholar 

  26. Mastroianni G, Milovanovic GV (2008) Interpolation processes: basic theory and applications. Springer, Berlin, pp 3–4

    Book  Google Scholar 

  27. Farajpour I, Atamturktur S (2012) Partitioned analysis of coupled numerical models considering imprecise parameters and inexact models. ASCE J Comput Civil Eng. doi:10.1061/(ASCE)CP.1943-5487.0000253

    Google Scholar 

  28. Farajpour I, Atamturktur S (2012) Error and uncertainty analysis of inexact and imprecise computer models. ASCE J Comput Civil Eng. doi:10.1061/(ASCE)CP.1943-5487.0000233

  29. Casella G, Berger RL (2002) Statistical inference, 2nd edn. Duxbury Press, Belmont, CA, p 556

    Google Scholar 

  30. Janke SJ, Tinsley FC (2005) Introduction to linear models and statistical inference. Wiley, Hoboken, p 230

    Book  MATH  Google Scholar 

  31. Leung H, Fan Z (2002) Software cost estimation, vol II. Handbook of software engineering. Department of Computing, The Hong Kong Polytechnic University, Hong Kong

    Google Scholar 

  32. Jørgensen M, Shepperd M (2007) A systematic review of software development cost estimation studies. IEEE Trans Softw Eng 33(1):33–53

    Article  Google Scholar 

  33. Malik AA, Boehm B (2011) Quantifying requirements elaboration to improve early software cost estimation. Inform Sci 181:2747–2760

    Article  Google Scholar 

  34. Sobieszczanski-Sobieski J, James BB, Dovi AR (1985) Structural optimization by multilevel decomposition. AIAA J 23(11):1775–1782

    Article  MathSciNet  MATH  Google Scholar 

  35. Vadde S, Krishnamachari RS, Allen JK, Mistree F (1991) The Bayesian compromise decision support problem for hierarchical design involving uncertainty. Advances in Design Automation, G.A. Gabriele, ed., vol. 32-1, ASME, New York, pp 209–218

    Google Scholar 

  36. Allen JK, Mistree F (1993) Design of hierarchical and non-hierarchical systems. Proceedings of the NSF grantees conference on design and manufacturing systems research, Charlotte, NC, pp 443–447

    Google Scholar 

  37. Hartmann F, Katz C (2007) Structural analysis with finite elements, 2nd edn. Springer, Berlin, p 295

    Book  MATH  Google Scholar 

  38. Pilkey WD (2005) Formulas for stress, strain, and structural matrices, 2nd edn. Wiley, Hoboken, NJ, p 29

    Google Scholar 

  39. Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J Optim 9(1):112–147

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sez Atamturktur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Farajpour, I., Atamturktur, S. (2014). Ranking Constituents of Coupled Models for Improved Performance. In: Mayes, R., Rixen, D., Allen, M. (eds) Topics in Experimental Dynamic Substructuring, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6540-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6540-9_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6539-3

  • Online ISBN: 978-1-4614-6540-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics