Molecular Mechanism of Ubiquitin-Dependent Traffic

  • Elena Maspero
  • Hans-Peter Wollscheid
  • Simona Polo
Chapter

Abstract

Posttranslational modification (PTM) of signaling receptors by the covalent attachment of one, or often more, ubiquitin (Ub) moieties has emerged as the major regulatory mechanism responsible for receptor “downregulation.” Pioneering work in yeast has demonstrated that Ub is required for the first step in cargo internalization as well as for targeting cargos to vacuoles (the yeast equivalent of lysosomes) [1, 2]. Following these initial observations, there are now numerous reports of ubiquitination of a vast array of mammalian signaling receptors, such as RTKs, GPCRs, MHC-I, NOTCH, various channels and transporters, cytokine, and interferon receptors (reviewed in [3–8]). The molecular basis of Ub-dependent regulation of receptor endocytosis is being clarified. In this chapter, we will give a general overview of the mammalian system.

Keywords

Sugar Attenuation Dopamine Tyrosine Cysteine 

Notes

Acknowledgements

Research in the Polo laboratory is supported by grants from the Associazione Italiana per la Ricerca sul Cancro, the Italian University Research Program for the Development of Research of National Interest and of Health (PRIN), the Association of International Cancer Research, the CARIPLO Foundation, and the EMBO Young Investigator Program. HPW is recipient of a Marie Curie/AIRC Cofund International Fellowship.

References

  1. 1.
    Hicke L, Riezman H (1996) Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84(2):277–87PubMedCrossRefGoogle Scholar
  2. 2.
    Kolling R, Hollenberg CP (1994) The ABC-transporter Ste6 accumulates in the plasma membrane in a ubiquitinated form in endocytosis mutants. EMBO J 13(14):3261–71PubMedGoogle Scholar
  3. 3.
    Acconcia F, Sigismund S, Polo S (2009) Ubiquitin in trafficking: the network at work. Exp Cell Res 315(9):1610–8PubMedCrossRefGoogle Scholar
  4. 4.
    Bianchi K, Meier P (2009) A tangled web of ubiquitin chains: breaking news in TNF-R1 signaling. Mol Cell 36(5):736–42PubMedCrossRefGoogle Scholar
  5. 5.
    Hanyaloglu AC, von Zastrow M (2008) Regulation of GPCRs by endocytic membrane ­trafficking and its potential implications. Annu Rev Pharmacol Toxicol 48:537–68PubMedCrossRefGoogle Scholar
  6. 6.
    Marchese A, Paing MM, Temple BR, Trejo J (2008) G protein-coupled receptor sorting to endosomes and lysosomes. Annu Rev Pharmacol Toxicol 48:601–29PubMedCrossRefGoogle Scholar
  7. 7.
    Miranda M, Sorkin A (2007) Regulation of receptors and transporters by ubiquitination: new insights into surprisingly similar mechanisms. Mol Interv 7(3):157–67PubMedCrossRefGoogle Scholar
  8. 8.
    Lauwers E, Erpapazoglou Z, Haguenauer-Tsapis R, Andre B (2010) The ubiquitin code of yeast permease trafficking. Trends Cell Biol 20(4):196–204PubMedCrossRefGoogle Scholar
  9. 9.
    Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–33PubMedCrossRefGoogle Scholar
  10. 10.
    Metzger MB, Hristova VA, Weissman AM (2012) HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci 125(pt 3):531–7PubMedCrossRefGoogle Scholar
  11. 11.
    Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434PubMedCrossRefGoogle Scholar
  12. 12.
    Ozkan E, Yu H, Deisenhofer J (2005) Mechanistic insight into the allosteric activation of a ubiquitin-conjugating enzyme by RING-type ubiquitin ligases. Proc Natl Acad Sci U S A 102(52):18890–5PubMedCrossRefGoogle Scholar
  13. 13.
    Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–29PubMedCrossRefGoogle Scholar
  14. 14.
    Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137(1):133–45PubMedCrossRefGoogle Scholar
  15. 15.
    Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21(8):921–6PubMedCrossRefGoogle Scholar
  16. 16.
    Tokunaga F, Nakagawa T, Nakahara M, Saeki Y, Taniguchi M, Sakata S, Tanaka K, Nakano H, Iwai K (2011) SHARPIN is a component of the NF-kappaB-activating linear ubiquitin chain assembly complex. Nature 471(7340):633–6PubMedCrossRefGoogle Scholar
  17. 17.
    Wickliffe KE, Williamson A, Meyer HJ, Kelly A, Rape M (2011) K11-linked ubiquitin chains as novel regulators of cell division. Trends Cell Biol 21(11):656–63PubMedCrossRefGoogle Scholar
  18. 18.
    Woelk T, Sigismund S, Penengo L, Polo S (2007) The ubiquitination code: a signalling problem. Cell Div 2:11PubMedCrossRefGoogle Scholar
  19. 19.
    Husnjak K, Dikic I (2012) Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem 81:291–322PubMedCrossRefGoogle Scholar
  20. 20.
    Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-­specific deubiquitinating enzymes. Annu Rev Biochem 78:363–97PubMedCrossRefGoogle Scholar
  21. 21.
    Eichhorn PJ, Rodon L, Gonzalez-Junca A, Dirac A, Gili M, Martinez-Saez E, Aura C, Barba I, Peg V, Prat A et al (2012) USP15 stabilizes TGF-beta receptor I and promotes oncogenesis through the activation of TGF-beta signaling in glioblastoma. Nat Med 18(3):429–35PubMedCrossRefGoogle Scholar
  22. 22.
    Kayagaki N, Phung Q, Chan S, Chaudhari R, Quan C, O’Rourke KM, Eby M, Pietras E, Cheng G, Bazan JF et al (2007) DUBA: a deubiquitinase that regulates type I interferon production. Science 318(5856):1628–32PubMedCrossRefGoogle Scholar
  23. 23.
    Pareja F, Ferraro DA, Rubin C, Cohen-Dvashi H, Zhang F, Aulmann S, Ben-Chetrit N, Pines G, Navon R, Crosetto N et al (2012) Deubiquitination of EGFR by Cezanne-1 contributes to cancer progression. Oncogene 31:4599–608PubMedCrossRefGoogle Scholar
  24. 24.
    Di Fiore PP, Polo S, Hofmann K (2003) When ubiquitin meets ubiquitin receptors: a signalling connection. Nat Rev Mol Cell Biol 4(6):491–7PubMedCrossRefGoogle Scholar
  25. 25.
    Polo S, Sigismund S, Faretta M, Guidi M, Capua MR, Bossi G, Chen H, De Camilli P, Di Fiore PP (2002) A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416(6879):451–5PubMedCrossRefGoogle Scholar
  26. 26.
    Hislop JN, von Zastrow M (2011) Role of ubiquitination in endocytic trafficking of G-protein-coupled receptors. Traffic 12(2):137–48PubMedCrossRefGoogle Scholar
  27. 27.
    Govers R, ten Broeke T, van Kerkhof P, Schwartz AL, Strous GJ (1999) Identification of a novel ubiquitin conjugation motif, required for ligand-induced internalization of the growth hormone receptor. EMBO J 18(1):28–36PubMedCrossRefGoogle Scholar
  28. 28.
    Marchese A, Benovic JL (2001) Agonist-promoted ubiquitination of the G protein-coupled receptor CXCR4 mediates lysosomal sorting. J Biol Chem 276(49):45509–12PubMedCrossRefGoogle Scholar
  29. 29.
    Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ (2001) Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science 294(5545):1307–13PubMedCrossRefGoogle Scholar
  30. 30.
    Wang P, Wu Y, Ge X, Ma L, Pei G (2003) Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus. J Biol Chem 278(13):11648–53PubMedCrossRefGoogle Scholar
  31. 31.
    Shenoy SK, Xiao K, Venkataramanan V, Snyder PM, Freedman NJ, Weissman AM (2008) Nedd4 mediates agonist-dependent ubiquitination, lysosomal targeting, and degradation of the beta2-adrenergic receptor. J Biol Chem 283(32):22166–76PubMedCrossRefGoogle Scholar
  32. 32.
    Marchese A, Raiborg C, Santini F, Keen JH, Stenmark H, Benovic JL (2003) The E3 ubiquitin ligase AIP4 mediates ubiquitination and sorting of the G protein-coupled receptor CXCR4. Dev Cell 5(5):709–22PubMedCrossRefGoogle Scholar
  33. 33.
    Bhandari D, Robia SL, Marchese A (2009) The E3 ubiquitin ligase atrophin interacting protein 4 binds directly to the chemokine receptor CXCR4 via a novel WW domain-mediated interaction. Mol Biol Cell 20(5):1324–39PubMedCrossRefGoogle Scholar
  34. 34.
    Wolfe BL, Marchese A, Trejo J (2007) Ubiquitination differentially regulates clathrin-­dependent internalization of protease-activated receptor-1. J Cell Biol 177(5):905–16PubMedCrossRefGoogle Scholar
  35. 35.
    Gullapalli A, Wolfe BL, Griffin CT, Magnuson T, Trejo J (2006) An essential role for SNX1 in lysosomal sorting of protease-activated receptor-1: evidence for retromer-, Hrs-, and Tsg101-independent functions of sorting nexins. Mol Biol Cell 17(3):1228–38PubMedCrossRefGoogle Scholar
  36. 36.
    Galcheva-Gargova Z, Theroux SJ, Davis RJ (1995) The epidermal growth factor receptor is covalently linked to ubiquitin. Oncogene 11(12):2649–55PubMedGoogle Scholar
  37. 37.
    Mori S, Heldin CH, Claesson-Welsh L (1993) Ligand-induced ubiquitination of the platelet-­derived growth factor beta-receptor plays a negative regulatory role in its mitogenic signaling. J Biol Chem 268(1):577–83PubMedGoogle Scholar
  38. 38.
    Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, Dikic I (2003) Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 5(5):461–6PubMedCrossRefGoogle Scholar
  39. 39.
    Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A (2006) Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell 21(6):737–48PubMedCrossRefGoogle Scholar
  40. 40.
    Macgurn JA, Hsu PC, Emr SD (2012) Ubiquitin and membrane protein turnover: from cradle to grave. Annu Rev Biochem 81:231–59PubMedCrossRefGoogle Scholar
  41. 41.
    Lauwers E, Jacob C, Andre B (2009) K63-linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway. J Cell Biol 185(3):493–502PubMedCrossRefGoogle Scholar
  42. 42.
    Erpapazoglou Z, Dhaoui M, Pantazopoulou M, Giordano F, Mari M, Leon S, Raposo G, Reggiori F, Haguenauer-Tsapis R (2012) A dual role for K63-linked ubiquitin chains in multivesicular bodies biogenesis and cargo sorting. Mol Biol Cell 23:2170–83PubMedCrossRefGoogle Scholar
  43. 43.
    Huang F, Goh LK, Sorkin A (2007) EGF receptor ubiquitination is not necessary for its internalization. Proc Natl Acad Sci U S A 104(43):16904–9PubMedCrossRefGoogle Scholar
  44. 44.
    Sigismund S, Woelk T, Puri C, Maspero E, Tacchetti C, Transidico P, Di Fiore PP, Polo S (2005) Clathrin-independent endocytosis of ubiquitinated cargos. Proc Natl Acad Sci U S A 102(8):2760–5PubMedCrossRefGoogle Scholar
  45. 45.
    Duan L, Miura Y, Dimri M, Majumder B, Dodge IL, Reddi AL, Ghosh A, Fernandes N, Zhou P, Mullane-Robinson K et al (2003) Cbl-mediated ubiquitinylation is required for lysosomal sorting of epidermal growth factor receptor but is dispensable for endocytosis. J Biol Chem 278(31):28950–60PubMedCrossRefGoogle Scholar
  46. 46.
    Sorkin A (2004) Cargo recognition during clathrin-mediated endocytosis: a team effort. Curr Opin Cell Biol 16(4):392–9PubMedCrossRefGoogle Scholar
  47. 47.
    Sigismund S, Argenzio E, Tosoni D, Cavallaro E, Polo S, Di Fiore PP (2008) Clathrin-­mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell 15(2):209–19PubMedCrossRefGoogle Scholar
  48. 48.
    He L, Vasiliou K, Nebert DW (2009) Analysis and update of the human solute carrier (SLC) gene superfamily. Hum Genomics 3(2):195–206PubMedCrossRefGoogle Scholar
  49. 49.
    Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H, Bruford EA (2004) The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction. Pflugers Arch 447(5):465–8PubMedCrossRefGoogle Scholar
  50. 50.
    Edinger AL (2007) Controlling cell growth and survival through regulated nutrient transporter expression. Biochem J 406(1):1–12PubMedCrossRefGoogle Scholar
  51. 51.
    Galan JM, Moreau V, Andre B, Volland C, Haguenauer-Tsapis R (1996) Ubiquitination mediated by the Npi1p/Rsp5p ubiquitin-protein ligase is required for endocytosis of the yeast uracil permease. J Biol Chem 271(18):10946–52PubMedCrossRefGoogle Scholar
  52. 52.
    Springael JY, Galan JM, Haguenauer-Tsapis R, Andre B (1999) NH4+-induced down-­regulation of the Saccharomyces cerevisiae Gap1p permease involves its ubiquitination with lysine-63-linked chains. J Cell Sci 112(pt 9):1375–83PubMedGoogle Scholar
  53. 53.
    Springael JY, Andre B (1998) Nitrogen-regulated ubiquitination of the Gap1 permease of Saccharomyces cerevisiae. Mol Biol Cell 9(6):1253–63PubMedGoogle Scholar
  54. 54.
    Rotin D, Staub O, Haguenauer-Tsapis R (2000) Ubiquitination and endocytosis of plasma membrane proteins: role of Nedd4/Rsp5p family of ubiquitin-protein ligases. J Membr Biol 176(1):1–17PubMedGoogle Scholar
  55. 55.
    Sorkina T, Miranda M, Dionne KR, Hoover BR, Zahniser NR, Sorkin A (2006) RNA interference screen reveals an essential role of Nedd4-2 in dopamine transporter ubiquitination and endocytosis. J Neurosci 26(31):8195–205PubMedCrossRefGoogle Scholar
  56. 56.
    Miranda M, Dionne KR, Sorkina T, Sorkin A (2007) Three ubiquitin conjugation sites in the amino terminus of the dopamine transporter mediate protein kinase C-dependent endocytosis of the transporter. Mol Biol Cell 18(1):313–23PubMedCrossRefGoogle Scholar
  57. 57.
    Vina-Vilaseca A, Bender-Sigel J, Sorkina T, Closs EI, Sorkin A (2011) Protein kinase C-dependent ubiquitination and clathrin-mediated endocytosis of the cationic amino acid transporter CAT-1. J Biol Chem 286(10):8697–706PubMedCrossRefGoogle Scholar
  58. 58.
    Argenzio E, Bange T, Oldrini B, Bianchi F, Peesari R, Mari S, Di Fiore PP, Mann M, Polo S (2011) Proteomic snapshot of the EGF-induced ubiquitin network. Mol Syst Biol 7:462PubMedCrossRefGoogle Scholar
  59. 59.
    Fortini ME (2009) Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 16(5):633–47PubMedCrossRefGoogle Scholar
  60. 60.
    Le Bras S, Loyer N, Le Borgne R (2011) The multiple facets of ubiquitination in the regulation of notch signaling pathway. Traffic 12(2):149–61PubMedCrossRefGoogle Scholar
  61. 61.
    Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137(2):216–33PubMedCrossRefGoogle Scholar
  62. 62.
    Windler SL, Bilder D (2010) Endocytic internalization routes required for delta/notch signaling. Curr Biol 20(6):538–43PubMedCrossRefGoogle Scholar
  63. 63.
    Rajan A, Tien AC, Haueter CM, Schulze KL, Bellen HJ (2009) The Arp2/3 complex and WASp are required for apical trafficking of Delta into microvilli during cell fate specification of sensory organ precursors. Nat Cell Biol 11(7):815–24PubMedCrossRefGoogle Scholar
  64. 64.
    Shimizu K, Chiba S, Saito T, Takahashi T, Kumano K, Hamada Y, Hirai H (2002) Integrity of intracellular domain of Notch ligand is indispensable for cleavage required for release of the Notch2 intracellular domain. EMBO J 21(3):294–302PubMedCrossRefGoogle Scholar
  65. 65.
    Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458(7237):445–52PubMedCrossRefGoogle Scholar
  66. 66.
    Owen DJ, Collins BM, Evans PR (2004) Adaptors for clathrin coats: structure and function. Annu Rev Cell Dev Biol 20:153–91PubMedCrossRefGoogle Scholar
  67. 67.
    Wendland B (2002) Epsins: adaptors in endocytosis? Nat Rev Mol Cell Biol 3(12):971–7PubMedCrossRefGoogle Scholar
  68. 68.
    Horvath CA, Vanden Broeck D, Boulet GA, Bogers J, De Wolf MJ (2007) Epsin: inducing membrane curvature. Int J Biochem Cell Biol 39(10):1765–70PubMedCrossRefGoogle Scholar
  69. 69.
    Santini F, Gaidarov I, Keen JH (2002) G protein-coupled receptor/arrestin3 modulation of the endocytic machinery. J Cell Biol 156(4):665–76PubMedCrossRefGoogle Scholar
  70. 70.
    Shenoy SK, Modi AS, Shukla AK, Xiao K, Berthouze M, Ahn S, Wilkinson KD, Miller WE, Lefkowitz RJ (2009) Beta-arrestin-dependent signaling and trafficking of 7-transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2. Proc Natl Acad Sci U S A 106(16):6650–5PubMedCrossRefGoogle Scholar
  71. 71.
    Haglund K, Shimokawa N, Szymkiewicz I, Dikic I (2002) Cbl-directed monoubiquitination of CIN85 is involved in regulation of ligand-induced degradation of EGF receptors. Proc Natl Acad Sci U S A 99(19):12191–6PubMedCrossRefGoogle Scholar
  72. 72.
    Shih SC, Katzmann DJ, Schnell JD, Sutanto M, Emr SD, Hicke L (2002) Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nat Cell Biol 4(5):389–93PubMedCrossRefGoogle Scholar
  73. 73.
    Katz M, Shtiegman K, Tal-Or P, Yakir L, Mosesson Y, Harari D, Machluf Y, Asao H, Jovin T, Sugamura K et al (2002) Ligand-independent degradation of epidermal growth factor receptor involves receptor ubiquitylation and Hgs, an adaptor whose ubiquitin-interacting motif targets ubiquitylation by Nedd4. Traffic 3(10):740–51PubMedCrossRefGoogle Scholar
  74. 74.
    Woelk T, Oldrini B, Maspero E, Confalonieri S, Cavallaro E, Di Fiore PP, Polo S (2006) Molecular mechanisms of coupled monoubiquitination. Nat Cell Biol 8(11):1246–54PubMedCrossRefGoogle Scholar
  75. 75.
    Fallon L, Belanger CM, Corera AT, Kontogiannea M, Regan-Klapisz E, Moreau F, Voortman J, Haber M, Rouleau G, Thorarinsdottir T et al (2006) A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling. Nat Cell Biol 8(8):834–42PubMedCrossRefGoogle Scholar
  76. 76.
    Hoeller D, Crosetto N, Blagoev B, Raiborg C, Tikkanen R, Wagner S, Kowanetz K, Breitling R, Mann M, Stenmark H et al (2006) Regulation of ubiquitin-binding proteins by monoubiquitination. Nat Cell Biol 8(2):163–9PubMedCrossRefGoogle Scholar
  77. 77.
    Mattera R, Bonifacino JS (2008) Ubiquitin binding and conjugation regulate the recruitment of Rabex-5 to early endosomes. EMBO J 27(19):2484–94PubMedCrossRefGoogle Scholar
  78. 78.
    Polo S (2012) Signaling-mediated control of ubiquitin ligases in endocytosis. BMC Biol 10:25PubMedCrossRefGoogle Scholar
  79. 79.
    Levkowitz G, Klapper LN, Tzahar E, Freywald A, Sela M, Yarden Y (1996) Coupling of the c-Cbl protooncogene product to ErbB-1/EGF-receptor but not to other ErbB proteins. Oncogene 12(5):1117–25PubMedGoogle Scholar
  80. 80.
    Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I, Lavi S, Iwai K, Reiss Y, Ciechanover A et al (1999) Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 4(6):1029–40PubMedCrossRefGoogle Scholar
  81. 81.
    Schmidt MH, Dikic I (2005) The Cbl interactome and its functions. Nat Rev Mol Cell Biol 6(12):907–18PubMedCrossRefGoogle Scholar
  82. 82.
    Peschard P, Fournier TM, Lamorte L, Naujokas MA, Band H, Langdon WY, Park M (2001) Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol Cell 8(5):995–1004PubMedCrossRefGoogle Scholar
  83. 83.
    Waterman H, Katz M, Rubin C, Shtiegman K, Lavi S, Elson A, Jovin T, Yarden Y (2002) A mutant EGF-receptor defective in ubiquitylation and endocytosis unveils a role for Grb2 in negative signaling. EMBO J 21(3):303–13PubMedCrossRefGoogle Scholar
  84. 84.
    Jiang X, Huang F, Marusyk A, Sorkin A (2003) Grb2 Regulates Internalization of EGF Receptors through Clathrin-coated pits. Mol Biol Cell 14(3):858–70PubMedCrossRefGoogle Scholar
  85. 85.
    Huang F, Sorkin A (2005) Growth factor receptor binding protein 2-mediated recruitment of the RING domain of Cbl to the epidermal growth factor receptor is essential and sufficient to support receptor endocytosis. Mol Biol Cell 16(3):1268–81PubMedCrossRefGoogle Scholar
  86. 86.
    Kassenbrock CK, Hunter S, Garl P, Johnson GL, Anderson SM (2002) Inhibition of Src family kinases blocks epidermal growth factor (EGF)-induced activation of Akt, phosphorylation of c-Cbl, and ubiquitination of the EGF receptor. J Biol Chem 277(28):24967–75PubMedCrossRefGoogle Scholar
  87. 87.
    Kobashigawa Y, Tomitaka A, Kumeta H, Noda NN, Yamaguchi M, Inagaki F (2011) Autoinhibition and phosphorylation-induced activation mechanisms of human cancer and autoimmune disease-related E3 protein Cbl-b. Proc Natl Acad Sci U S A 108(51):20579–84PubMedCrossRefGoogle Scholar
  88. 88.
    Dou H, Buetow L, Hock A, Sibbet GJ, Vousden KH, Huang DT (2012) Structural basis for autoinhibition and phosphorylation-dependent activation of c-Cbl. Nat Struct Mol Biol 19(2):184–92PubMedCrossRefGoogle Scholar
  89. 89.
    Rotin D, Kumar S (2009) Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 10(6):398–409PubMedCrossRefGoogle Scholar
  90. 90.
    Wiesner S, Ogunjimi AA, Wang HR, Rotin D, Sicheri F, Wrana JL, Forman-Kay JD (2007) Autoinhibition of the HECT-type ubiquitin ligase Smurf2 through its C2 domain. Cell 130(4):651–62PubMedCrossRefGoogle Scholar
  91. 91.
    Gallagher E, Gao M, Liu YC, Karin M (2006) Activation of the E3 ubiquitin ligase Itch through a phosphorylation-induced conformational change. Proc Natl Acad Sci U S A 103(6):1717–22PubMedCrossRefGoogle Scholar
  92. 92.
    Ogunjimi AA, Briant DJ, Pece-Barbara N, Le Roy C, Di Guglielmo GM, Kavsak P, Rasmussen RK, Seet BT, Sicheri F, Wrana JL (2005) Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol Cell 19(3):297–308PubMedCrossRefGoogle Scholar
  93. 93.
    Maspero E, Mari S, Valentini E, Musacchio A, Fish A, Pasqualato S, Polo S (2011) Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation. EMBO Rep 12(4):342–9PubMedCrossRefGoogle Scholar
  94. 94.
    Kim HC, Steffen AM, Oldham ML, Chen J, Huibregtse JM (2011) Structure and function of a HECT domain ubiquitin-binding site. EMBO Rep 12(4):334–41PubMedCrossRefGoogle Scholar
  95. 95.
    Ichimura T, Yamamura H, Sasamoto K, Tominaga Y, Taoka M, Kakiuchi K, Shinkawa T, Takahashi N, Shimada S, Isobe T (2005) 14-3-3 proteins modulate the expression of epithelial Na+ channels by phosphorylation-dependent interaction with Nedd4-2 ubiquitin ligase. J Biol Chem 280(13):13187–94PubMedCrossRefGoogle Scholar
  96. 96.
    Snyder PM (2009) Down-regulating destruction: phosphorylation regulates the E3 ubiquitin ligase Nedd4-2. Sci Signal 2(79):pe41PubMedCrossRefGoogle Scholar
  97. 97.
    Le Borgne R (2006) Regulation of Notch signalling by endocytosis and endosomal sorting. Curr Opin Cell Biol 18(2):213–22PubMedCrossRefGoogle Scholar
  98. 98.
    Babst M, Katzmann DJ, Estepa-Sabal EJ, Meerloo T, Emr SD (2002) Escrt-III: an endosome-­associated heterooligomeric protein complex required for mvb sorting. Dev Cell 3(2): 271–82PubMedCrossRefGoogle Scholar
  99. 99.
    Bache KG, Brech A, Mehlum A, Stenmark H (2003) Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J Cell Biol 162(3):435–42PubMedCrossRefGoogle Scholar
  100. 100.
    Katzmann DJ, Babst M, Emr SD (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106(2):145–55PubMedCrossRefGoogle Scholar
  101. 101.
    Lu Q, Hope LW, Brasch M, Reinhard C, Cohen SN (2003) TSG101 interaction with HRS mediates endosomal trafficking and receptor down-regulation. Proc Natl Acad Sci U S A 100(13):7626–31PubMedCrossRefGoogle Scholar
  102. 102.
    Hurley JH, Hanson PI (2010) Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat Rev Mol Cell Biol 11(8):556–66PubMedCrossRefGoogle Scholar
  103. 103.
    Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21(1):77–91PubMedCrossRefGoogle Scholar
  104. 104.
    McCullough J, Clague MJ, Urbe S (2004) AMSH is an endosome-associated ubiquitin isopeptidase. J Cell Biol 166(4):487–92PubMedCrossRefGoogle Scholar
  105. 105.
    Agromayor M, Martin-Serrano J (2006) Interaction of AMSH with ESCRT-III and deubiquitination of endosomal cargo. J Biol Chem 281(32):23083–91PubMedCrossRefGoogle Scholar
  106. 106.
    Row PE, Prior IA, McCullough J, Clague MJ, Urbe S (2006) The ubiquitin isopeptidase UBPY regulates endosomal ubiquitin dynamics and is essential for receptor down-regulation. J Biol Chem 281(18):12618–24PubMedCrossRefGoogle Scholar
  107. 107.
    Duex JE, Sorkin A (2009) RNA interference screen identifies Usp18 as a regulator of epidermal growth factor receptor synthesis. Mol Biol Cell 20(6):1833–44PubMedCrossRefGoogle Scholar
  108. 108.
    Duex JE, Comeau L, Sorkin A, Purow B, Kefas B (2011) Usp18 regulates epidermal growth factor (EGF) receptor expression and cancer cell survival via microRNA-7. J Biol Chem 286(28):25377–86PubMedCrossRefGoogle Scholar
  109. 109.
    Lloyd TE, Atkinson R, Wu MN, Zhou Y, Pennetta G, Bellen HJ (2002) Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell 108(2):261–9PubMedCrossRefGoogle Scholar
  110. 110.
    Hammond DE, Carter S, McCullough J, Urbe S, Vande Woude G, Clague MJ (2003) Endosomal dynamics of Met determine signaling output. Mol Biol Cell 14(4):1346–54PubMedCrossRefGoogle Scholar
  111. 111.
    Niendorf S, Oksche A, Kisser A, Lohler J, Prinz M, Schorle H, Feller S, Lewitzky M, Horak I, Knobeloch KP (2007) Essential role of ubiquitin-specific protease 8 for receptor tyrosine kinase stability and endocytic trafficking in vivo. Mol Cell Biol 27(13):5029–39PubMedCrossRefGoogle Scholar
  112. 112.
    Bache KG, Stuffers S, Malerod L, Slagsvold T, Raiborg C, Lechardeur D, Walchli S, Lukacs GL, Brech A, Stenmark H (2006) The ESCRT-III subunit hVps24 is required for degradation but not silencing of the epidermal growth factor receptor. Mol Biol Cell 17(6):2513–23PubMedCrossRefGoogle Scholar
  113. 113.
    Vaccari T, Lu H, Kanwar R, Fortini ME, Bilder D (2008) Endosomal entry regulates Notch receptor activation in Drosophila melanogaster. J Cell Biol 180(4):755–62PubMedCrossRefGoogle Scholar
  114. 114.
    Mosesson Y, Mills GB, Yarden Y (2008) Derailed endocytosis: an emerging feature of cancer. Nat Rev Cancer 8(11):835–50PubMedCrossRefGoogle Scholar
  115. 115.
    Sorkin A, Goh LK (2009) Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res 315(4):683–96PubMedCrossRefGoogle Scholar
  116. 116.
    Lai AZ, Abella JV, Park M (2009) Crosstalk in Met receptor oncogenesis. Trends Cell Biol 19(10):542–51PubMedCrossRefGoogle Scholar
  117. 117.
    Pines G, Kostler WJ, Yarden Y (2010) Oncogenic mutant forms of EGFR: lessons in signal transduction and targets for cancer therapy. FEBS Lett 584(12):2699–706PubMedCrossRefGoogle Scholar
  118. 118.
    Zeng S, Xu Z, Lipkowitz S, Longley JB (2005) Regulation of stem cell factor receptor signaling by Cbl family proteins (Cbl-b/c-Cbl). Blood 105(1):226–32PubMedCrossRefGoogle Scholar
  119. 119.
    Shtiegman K, Kochupurakkal BS, Zwang Y, Pines G, Starr A, Vexler A, Citri A, Katz M, Lavi S, Ben-Basat Y et al (2007) Defective ubiquitinylation of EGFR mutants of lung cancer confers prolonged signaling. Oncogene 26(49):6968–78PubMedCrossRefGoogle Scholar
  120. 120.
    Grandal MV, Zandi R, Pedersen MW, Willumsen BM, van Deurs B, Poulsen HS (2007) EGFRvIII escapes down-regulation due to impaired internalization and sorting to lysosomes. Carcinogenesis 28(7):1408–17PubMedCrossRefGoogle Scholar
  121. 121.
    Han W, Zhang T, Yu H, Foulke JG, Tang CK (2006) Hypophosphorylation of residue Y1045 leads to defective downregulation of EGFRvIII. Cancer Biol Ther 5(10):1361–8PubMedCrossRefGoogle Scholar
  122. 122.
    Baulida J, Kraus MH, Alimandi M, Di Fiore PP, Carpenter G (1996) All ErbB receptors other than the epidermal growth factor receptor are endocytosis impaired. J Biol Chem 271(9):5251–7PubMedCrossRefGoogle Scholar
  123. 123.
    Austin CD, De Maziere AM, Pisacane PI, van Dijk SM, Eigenbrot C, Sliwkowski MX, Klumperman J, Scheller RH (2004) Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. Mol Biol Cell 15(12):5268–82PubMedCrossRefGoogle Scholar
  124. 124.
    Hendriks BS, Opresko LK, Wiley HS, Lauffenburger D (2003) Coregulation of epidermal growth factor receptor/human epidermal growth factor receptor 2 (HER2) levels and locations: quantitative analysis of HER2 overexpression effects. Cancer Res 63(5):1130–7PubMedGoogle Scholar
  125. 125.
    Lenferink AE, Pinkas-Kramarski R, van de Poll ML, van Vugt MJ, Klapper LN, Tzahar E, Waterman H, Sela M, van Zoelen EJ, Yarden Y (1998) Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. EMBO J 17(12):3385–97PubMedCrossRefGoogle Scholar
  126. 126.
    Dorsam RT, Gutkind JS (2007) G-protein-coupled receptors and cancer. Nat Rev Cancer 7(2):79–94PubMedCrossRefGoogle Scholar
  127. 127.
    Li YM, Pan Y, Wei Y, Cheng X, Zhou BP, Tan M, Zhou X, Xia W, Hortobagyi GN, Yu D et al (2004) Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 6(5):459–69PubMedCrossRefGoogle Scholar
  128. 128.
    Slagsvold T, Marchese A, Brech A, Stenmark H (2006) CISK attenuates degradation of the chemokine receptor CXCR4 via the ubiquitin ligase AIP4. EMBO J 25(16):3738–49PubMedCrossRefGoogle Scholar
  129. 129.
    Liang W, Fishman PH (2004) Resistance of the human beta1-adrenergic receptor to agonist-­induced ubiquitination: a mechanism for impaired receptor degradation. J Biol Chem 279(45):46882–9PubMedCrossRefGoogle Scholar
  130. 130.
    Nabhan JF, Pan H, Lu Q (2010) Arrestin domain-containing protein 3 recruits the NEDD4 E3 ligase to mediate ubiquitination of the beta2-adrenergic receptor. EMBO Rep 11(8):605–11PubMedCrossRefGoogle Scholar
  131. 131.
    Hasdemir B, Bunnett NW, Cottrell GS (2007) Hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) mediates post-endocytic trafficking of protease-activated receptor 2 and calcitonin receptor-like receptor. J Biol Chem 282(40):29646–57PubMedCrossRefGoogle Scholar
  132. 132.
    Padilla BE, Cottrell GS, Roosterman D, Pikios S, Muller L, Steinhoff M, Bunnett NW (2007) Endothelin-converting enzyme-1 regulates endosomal sorting of calcitonin receptor-like receptor and beta-arrestins. J Cell Biol 179(5):981–97PubMedCrossRefGoogle Scholar
  133. 133.
    Martini L, Waldhoer M, Pusch M, Kharazia V, Fong J, Lee JH, Freissmuth C, Whistler JL (2007) Ligand-induced down-regulation of the cannabinoid 1 receptor is mediated by the G-protein-coupled receptor-associated sorting protein GASP1. FASEB J 21(3):802–11PubMedCrossRefGoogle Scholar
  134. 134.
    Bhandari D, Trejo J, Benovic JL, Marchese A (2007) Arrestin-2 interacts with the ubiquitin-­protein isopeptide ligase atrophin-interacting protein 4 and mediates endosomal sorting of the chemokine receptor CXCR4. J Biol Chem 282(51):36971–9PubMedCrossRefGoogle Scholar
  135. 135.
    Malik R, Marchese A (2010) Arrestin-2 interacts with the endosomal sorting complex required for transport machinery to modulate endosomal sorting of CXCR4. Mol Biol Cell 21(14):2529–41PubMedCrossRefGoogle Scholar
  136. 136.
    Tanowitz M, Von Zastrow M (2002) Ubiquitination-independent trafficking of G protein-­coupled receptors to lysosomes. J Biol Chem 277(52):50219–22PubMedCrossRefGoogle Scholar
  137. 137.
    Hislop JN, Henry AG, Marchese A, von Zastrow M (2009) Ubiquitination regulates proteolytic processing of G protein-coupled receptors after their sorting to lysosomes. J Biol Chem 284(29):19361–70PubMedCrossRefGoogle Scholar
  138. 138.
    Bartlett SE, Enquist J, Hopf FW, Lee JH, Gladher F, Kharazia V, Waldhoer M, Mailliard WS, Armstrong R, Bonci A et al (2005) Dopamine responsiveness is regulated by targeted sorting of D2 receptors. Proc Natl Acad Sci U S A 102(32):11521–6PubMedCrossRefGoogle Scholar
  139. 139.
    Li JG, Haines DS, Liu-Chen LY (2008) Agonist-promoted Lys63-linked polyubiquitination of the human kappa-opioid receptor is involved in receptor down-regulation. Mol Pharmacol 73(4):1319–30PubMedCrossRefGoogle Scholar
  140. 140.
    Li JG, Chen C, Liu-Chen LY (2002) Ezrin-radixin-moesin-binding phosphoprotein-50/Na+/H+ exchanger regulatory factor (EBP50/NHERF) blocks U50,488H-induced down-­regulation of the human kappa opioid receptor by enhancing its recycling rate. J Biol Chem 277(30): 27545–52PubMedCrossRefGoogle Scholar
  141. 141.
    Cottrell GS, Padilla B, Pikios S, Roosterman D, Steinhoff M, Gehringer D, Grady EF, Bunnett NW (2006) Ubiquitin-dependent down-regulation of the neurokinin-1 receptor. J Biol Chem 281(38):27773–83PubMedCrossRefGoogle Scholar
  142. 142.
    Roosterman D, Cottrell GS, Padilla BE, Muller L, Eckman CB, Bunnett NW, Steinhoff M (2007) Endothelin-converting enzyme 1 degrades neuropeptides in endosomes to control receptor recycling. Proc Natl Acad Sci U S A 104(28):11838–43PubMedCrossRefGoogle Scholar
  143. 143.
    Dupre DJ, Chen Z, Le Gouill C, Theriault C, Parent JL, Rola-Pleszczynski M, Stankova J (2003) Trafficking, ubiquitination, and down-regulation of the human platelet-activating factor receptor. J Biol Chem 278(48):48228–35PubMedCrossRefGoogle Scholar
  144. 144.
    Wang Y, Zhou Y, Szabo K, Haft CR, Trejo J (2002) Down-regulation of protease-activated receptor-1 is regulated by sorting nexin 1. Mol Biol Cell 13(6):1965–76PubMedCrossRefGoogle Scholar
  145. 145.
    Jacob C, Cottrell GS, Gehringer D, Schmidlin F, Grady EF (2005) Bunnett NW: c-Cbl mediates ubiquitination, degradation, and down-regulation of human protease-activated receptor 2. J Biol Chem 280(16):16076–87PubMedCrossRefGoogle Scholar
  146. 146.
    Martin NP, Lefkowitz RJ, Shenoy SK (2003) Regulation of V2 vasopressin receptor degradation by agonist-promoted ubiquitination. J Biol Chem 278(46):45954–9PubMedCrossRefGoogle Scholar
  147. 147.
    Kobayashi S, Sawano A, Nojima Y, Shibuya M, Maru Y (2004) The c-Cbl/CD2AP complex regulates VEGF-induced endocytosis and degradation of Flt-1 (VEGFR-1). FASEB J 18(7): 929–31PubMedGoogle Scholar
  148. 148.
    Duval M, Bedard-Goulet S, Delisle C, Gratton JP (2003) Vascular endothelial growth factor-­dependent down-regulation of Flk-1/KDR involves Cbl-mediated ubiquitination. Consequences on nitric oxide production from endothelial cells. J Biol Chem 278(22): 20091–7PubMedCrossRefGoogle Scholar
  149. 149.
    Murdaca J, Treins C, Monthouel-Kartmann MN, Pontier-Bres R, Kumar S, Van Obberghen E, Giorgetti-Peraldi S (2004) Grb10 prevents Nedd4-mediated vascular endothelial growth factor receptor-2 degradation. J Biol Chem 279(25):26754–61PubMedCrossRefGoogle Scholar
  150. 150.
    Reddi AL, Ying G, Duan L, Chen G, Dimri M, Douillard P, Druker BJ, Naramura M, Band V, Band H (2007) Binding of Cbl to a phospholipase Cgamma1-docking site on platelet-­derived growth factor receptor beta provides a dual mechanism of negative regulation. J Biol Chem 282(40):29336–47PubMedCrossRefGoogle Scholar
  151. 151.
    Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC (1999) The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286(5438):309–12PubMedCrossRefGoogle Scholar
  152. 152.
    Miyake S, Lupher ML Jr, Druker B, Band H (1998) The tyrosine kinase regulator Cbl enhances the ubiquitination and degradation of the platelet-derived growth factor receptor alpha. Proc Natl Acad Sci U S A 95(14):7927–32PubMedCrossRefGoogle Scholar
  153. 153.
    Haugsten EM, Malecki J, Bjorklund SM, Olsnes S, Wesche J (2008) Ubiquitination of fibroblast growth factor receptor 1 is required for its intracellular sorting but not for its endocytosis. Mol Biol Cell 19(8):3390–403PubMedCrossRefGoogle Scholar
  154. 154.
    Wong A, Lamothe B, Lee A, Schlessinger J, Lax I (2002) FRS2 alpha attenuates FGF receptor signaling by Grb2-mediated recruitment of the ubiquitin ligase Cbl. Proc Natl Acad Sci U S A 99(10):6684–9PubMedCrossRefGoogle Scholar
  155. 155.
    Cho JY, Guo C, Torello M, Lunstrum GP, Iwata T, Deng C, Horton WA (2004) Defective lysosomal targeting of activated fibroblast growth factor receptor 3 in achondroplasia. Proc Natl Acad Sci U S A 101(2):609–14PubMedCrossRefGoogle Scholar
  156. 156.
    Vecchione A, Marchese A, Henry P, Rotin D, Morrione A (2003) The Grb10/Nedd4 complex regulates ligand-induced ubiquitination and stability of the insulin-like growth factor I receptor. Mol Cell Biol 23(9):3363–72PubMedCrossRefGoogle Scholar
  157. 157.
    Girnita L, Girnita A, Larsson O (2003) Mdm2-dependent ubiquitination and degradation of the insulin-like growth factor 1 receptor. Proc Natl Acad Sci U S A 100(14):8247–52PubMedCrossRefGoogle Scholar
  158. 158.
    Sehat B, Andersson S, Girnita L, Larsson O (2008) Identification of c-Cbl as a new ligase for insulin-like growth factor-I receptor with distinct roles from Mdm2 in receptor ubiquitination and endocytosis. Cancer Res 68(14):5669–77PubMedCrossRefGoogle Scholar
  159. 159.
    Carter S, Urbe S, Clague MJ (2004) The met receptor degradation pathway: requirement for Lys48-linked polyubiquitin independent of proteasome activity. J Biol Chem 279(51): 52835–9PubMedCrossRefGoogle Scholar
  160. 160.
    Takahashi Y, Shimokawa N, Esmaeili-Mahani S, Morita A, Masuda H, Iwasaki T, Tamura J, Haglund K, Koibuchi N (2011) Ligand-induced downregulation of TrkA is partly regulated through ubiquitination by Cbl. FEBS Lett 585(12):1741–7PubMedCrossRefGoogle Scholar
  161. 161.
    Geetha T, Wooten MW (2008) TrkA receptor endolysosomal degradation is both ubiquitin and proteasome dependent. Traffic 9(7):1146–56PubMedCrossRefGoogle Scholar
  162. 162.
    Geetha T, Jiang J, Wooten MW (2005) Lysine 63 polyubiquitination of the nerve growth factor receptor TrkA directs internalization and signaling. Mol Cell 20(2):301–12PubMedCrossRefGoogle Scholar
  163. 163.
    Qiu XB, Goldberg AL (2002) Nrdp1/FLRF is a ubiquitin ligase promoting ubiquitination and degradation of the epidermal growth factor receptor family member, ErbB3. Proc Natl Acad Sci U S A 99(23):14843–8PubMedCrossRefGoogle Scholar
  164. 164.
    Cao Z, Wu X, Yen L, Sweeney C, Carraway KL III (2007) Neuregulin-induced ErbB3 downregulation is mediated by a protein stability cascade involving the E3 ubiquitin ligase Nrdp1. Mol Cell Biol 27(6):2180–8PubMedCrossRefGoogle Scholar
  165. 165.
    Yen L, Cao Z, Wu X, Ingalla ER, Baron C, Young LJ, Gregg JP, Cardiff RD, Borowsky AD, Sweeney C et al (2006) Loss of Nrdp1 enhances ErbB2/ErbB3-dependent breast tumor cell growth. Cancer Res 66(23):11279–86PubMedCrossRefGoogle Scholar
  166. 166.
    Zeng F, Xu J, Harris RC (2009) Nedd4 mediates ErbB4 JM-a/CYT-1 ICD ubiquitination and degradation in MDCK II cells. FASEB J 23(6):1935–45PubMedCrossRefGoogle Scholar
  167. 167.
    Li Y, Zhou Z, Alimandi M, Chen C (2009) WW domain containing E3 ubiquitin protein ligase 1 targets the full-length ErbB4 for ubiquitin-mediated degradation in breast cancer. Oncogene 28(33):2948–58PubMedCrossRefGoogle Scholar
  168. 168.
    Masson K, Heiss E, Band H, Ronnstrand L (2006) Direct binding of Cbl to Tyr568 and Tyr936 of the stem cell factor receptor/c-Kit is required for ligand-induced ubiquitination, internalization and degradation. Biochem J 399(1):59–67PubMedCrossRefGoogle Scholar
  169. 169.
    Sun J, Pedersen M, Bengtsson S, Ronnstrand L (2007) Grb2 mediates negative regulation of stem cell factor receptor/c-Kit signaling by recruitment of Cbl. Exp Cell Res 313(18): 3935–42PubMedCrossRefGoogle Scholar
  170. 170.
    Kuratomi G, Komuro A, Goto K, Shinozaki M, Miyazawa K, Miyazono K, Imamura T (2005) NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducing ubiquitin-­mediated degradation of Smad2 and TGF-beta type I receptor. Biochem J 386(pt 3):461–70PubMedGoogle Scholar
  171. 171.
    Komuro A, Imamura T, Saitoh M, Yoshida Y, Yamori T, Miyazono K, Miyazawa K (2004) Negative regulation of transforming growth factor-beta (TGF-beta) signaling by WW domain-containing protein 1 (WWP1). Oncogene 23(41):6914–23PubMedCrossRefGoogle Scholar
  172. 172.
    Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 6(6):1365–75PubMedCrossRefGoogle Scholar
  173. 173.
    Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K (2001) Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem 276(16):12477–80PubMedCrossRefGoogle Scholar
  174. 174.
    Scott RP, Eketjall S, Aineskog H, Ibanez CF (2005) Distinct turnover of alternatively spliced isoforms of the RET kinase receptor mediated by differential recruitment of the Cbl ubiquitin ligase. J Biol Chem 280(14):13442–9PubMedCrossRefGoogle Scholar
  175. 175.
    Pierchala BA, Tsui CC, Milbrandt J, Johnson EM (2007) NGF augments the autophosphorylation of Ret via inhibition of ubiquitin-dependent degradation. J Neurochem 100(5): 1169–76PubMedCrossRefGoogle Scholar
  176. 176.
    Wang Y, Yeung YG, Stanley ER (1999) CSF-1 stimulated multiubiquitination of the CSF-1 receptor and of Cbl follows their tyrosine phosphorylation and association with other ­signaling proteins. J Cell Biochem 72(1):119–34PubMedCrossRefGoogle Scholar
  177. 177.
    Pakuts B, Debonneville C, Liontos LM, Loreto MP, McGlade CJ (2007) The Src-like adaptor protein 2 regulates colony-stimulating factor-1 receptor signaling and down-regulation. J Biol Chem 282(25):17953–63PubMedCrossRefGoogle Scholar
  178. 178.
    Lee PS, Wang Y, Dominguez MG, Yeung YG, Murphy MA, Bowtell DD, Stanley ER (1999) The Cbl protooncoprotein stimulates CSF-1 receptor multiubiquitination and endocytosis, and attenuates macrophage proliferation. EMBO J 18(13):3616–28PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Elena Maspero
    • 1
  • Hans-Peter Wollscheid
    • 2
  • Simona Polo
    • 1
    • 2
  1. 1.IFOM, Fondazione Istituto FIRC di Oncologia MolecolareMilanItaly
  2. 2.Dipartimento di Medicina, Chirurgia ed OdontoiatriaUniversita’ degli Studi di MilanoMilanItaly

Personalised recommendations