Skip to main content

Genetic and Signaling Pathway Regulations of Tumor-Initiating Cells of the Prostate

  • Chapter
  • First Online:
  • 749 Accesses

Abstract

Here we review current literature on genetic and signaling pathway regulators of tumor initiating cells in prostate cancer. While we emphasize the consequence of PTEN loss and PI3K/AKT activation in prostate cancer initiating cells, we also assess the importance of other signaling regulators, including RAS/MAPK, WNT/b-catenin, MYC, NKX3.1 and p53 on these cells.Importantly, we stress how these factors alone, or in collaboration, alter tumor initiating cell/cancer stem cell function and consequently, phenotypes in in vivo prostate cancer models.Our review also highlights the understanding of how genetic pathway alteration influences cancer initiation by way of lineage tracing or cell type specific disruption.Functional similarities and differences of how tumor suppressor loss impacts human prostate cancer are also addressed, where appropriate.Finally, we touch on outstanding questions that future experimentation will hopefully address.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abou-Kheir WG et al (2010) Characterizing the contribution of stem/progenitor cells to tumorigenesis in the Pten−/−TP53−/− prostate cancer model. Stem Cells 28(12):2129–2140

    Article  PubMed  CAS  Google Scholar 

  • Ahuja D, Saenz-Robles MT, Pipas JM (2005) SV40 large T antigen targets multiple cellular ­pathways to elicit cellular transformation. Oncogene 24(52):7729–7745

    Article  PubMed  CAS  Google Scholar 

  • Backman SA et al (2004) Early onset of neoplasia in the prostate and skin of mice with ­tissue-­specific deletion of Pten. Proc Natl Acad Sci USA 101(6):1725–1730

    Article  PubMed  CAS  Google Scholar 

  • Barbieri CE et al (2012) Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 44(6):685–689

    Article  PubMed  CAS  Google Scholar 

  • Bhatia B et al (2008) Critical and distinct roles of p16 and telomerase in regulating the proliferative life span of normal human prostate epithelial progenitor cells. J Biol Chem 283(41): 27957–27972

    Article  PubMed  CAS  Google Scholar 

  • Bisson I, Prowse DM (2009) WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res 19(6):683–697

    Article  PubMed  CAS  Google Scholar 

  • Cao Q et al (2008) Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 27(58):7274–7284

    Article  PubMed  CAS  Google Scholar 

  • Chen Z et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-­deficient tumorigenesis. Nature 436(7051):725–730

    Article  PubMed  CAS  Google Scholar 

  • Choi N et al (2012) Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell 21(2):253–265

    Article  PubMed  CAS  Google Scholar 

  • Cicalese A et al (2009) The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138(6):1083–1095

    Article  PubMed  CAS  Google Scholar 

  • Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149(6):1192–1205

    Article  PubMed  CAS  Google Scholar 

  • Collins AT et al (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65(23):10946–10951

    Article  PubMed  CAS  Google Scholar 

  • Dubey P et al (2001) Alternative pathways to prostate carcinoma activate prostate stem cell antigen expression. Cancer Res 61(8):3256–3261

    PubMed  CAS  Google Scholar 

  • Dubrovska A et al (2009) The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci USA 106(1):268–273

    Article  PubMed  CAS  Google Scholar 

  • Ellwood-Yen K et al (2003) Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4(3):223–238

    Article  PubMed  CAS  Google Scholar 

  • Fan C et al (2009) PTEN inhibits BMI1 function independently of its phosphatase activity. Mol Cancer 8:98

    Article  PubMed  Google Scholar 

  • Gerstein AV et al (2002) APC/CTNNB1 (beta-catenin) pathway alterations in human prostate cancers. Genes Chromosomes Cancer 34(1):9–16

    Article  PubMed  CAS  Google Scholar 

  • Gingrich JR, Greenberg NM (1996) A transgenic mouse prostate cancer model. Toxicol Pathol 24(4):502–504

    Article  PubMed  CAS  Google Scholar 

  • Glinsky GV, Berezovska O, Glinskii AB (2005) Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 115(6):1503–1521

    Article  PubMed  CAS  Google Scholar 

  • Goldstein AS et al (2008) Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc Natl Acad Sci USA 105(52):20882–20887

    Article  PubMed  CAS  Google Scholar 

  • Goldstein AS et al (2010) Identification of a cell of origin for human prostate cancer. Science 329(5991):568–571

    Article  PubMed  CAS  Google Scholar 

  • Goto K et al (2006) Proximal prostatic stem cells are programmed to regenerate a proximal-distal ductal axis. Stem Cells 24(8):1859–1868

    Article  PubMed  CAS  Google Scholar 

  • Grasso CS et al (2012) The mutational landscape of lethal castration-resistant prostate cancer. Nature 487(7406):239–243

    Article  PubMed  CAS  Google Scholar 

  • Greenberg NM et al (1995) Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 92(8):3439–3443

    Article  PubMed  CAS  Google Scholar 

  • Groszer M et al (2001) Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294(5549):2186–2189

    Article  PubMed  CAS  Google Scholar 

  • Groszer M et al (2006) PTEN negatively regulates neural stem cell self-renewal by modulating G0-G1 cell cycle entry. Proc Natl Acad Sci USA 103(1):111–116

    Article  PubMed  CAS  Google Scholar 

  • Grubb RL 3rd, Kibel AS (2007) Prostate cancer: screening, diagnosis and management in 2007. Mo Med 104(5):408–413; quiz 413–414

    Google Scholar 

  • Guo W et al (2008) Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-­cell formation. Nature 453(7194):529–533

    Article  PubMed  CAS  Google Scholar 

  • Hermann PC et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3):313–323

    Article  PubMed  CAS  Google Scholar 

  • Holcomb IN et al (2009) Comparative analyses of chromosome alterations in soft-tissue metastases within and across patients with castration-resistant prostate cancer. Cancer Res 69(19): 7793–7802

    Article  PubMed  CAS  Google Scholar 

  • Hubner A et al (2012) JNK and PTEN cooperatively control the development of invasive adenocarcinoma of the prostate. Proc Natl Acad Sci USA 109(30):12046–12051

    Article  PubMed  CAS  Google Scholar 

  • Iwata T et al (2010) MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells. PLoS One 5(2):e9427

    Google Scholar 

  • Jeter CR et al (2009) Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells 27(5):993–1005

    Article  PubMed  CAS  Google Scholar 

  • Jiao J et al (2012) Identification of CD166 as a Surface Marker for Enriching Prostate Stem/ Progenitor and Cancer Initiating Cells. PLoS One 7(8):e42564

    Article  PubMed  CAS  Google Scholar 

  • Kamminga LM et al (2006) The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood 107(5):2170–2179

    Article  PubMed  CAS  Google Scholar 

  • Kasper S, Cookson MS (2006) Mechanisms leading to the development of hormone-resistant prostate cancer. Urol Clin North Am 33(2):201–210, vii

    Google Scholar 

  • King JC et al (2009) Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat Genet 41(5):524–526

    Article  PubMed  CAS  Google Scholar 

  • Kong D et al (2010) Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One 5(8):e12445

    Article  PubMed  Google Scholar 

  • Kong D et al (2012) Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS One 7(3):e33729

    Article  PubMed  CAS  Google Scholar 

  • Korsten H et al (2009) Accumulating progenitor cells in the luminal epithelial cell layer are candidate tumor initiating cells in a Pten knockout mouse prostate cancer model. PLoS One 4(5):e5662

    Article  PubMed  Google Scholar 

  • Lawson DA et al (2007) Isolation and functional characterization of murine prostate stem cells. Proc Natl Acad Sci USA 104(1):181–186

    Article  PubMed  CAS  Google Scholar 

  • Lawson DA et al (2010) Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc Natl Acad Sci USA 107(6):2610–2615

    Article  PubMed  CAS  Google Scholar 

  • Liao CP et al (2010) Cancer-associated fibroblasts enhance the gland-forming capability of prostate cancer stem cells. Cancer Res 70(18):7294–7303

    Article  PubMed  CAS  Google Scholar 

  • Liu W et al (2009) Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat Med 15(5):559–565

    Article  PubMed  CAS  Google Scholar 

  • Luchman HA et al (2008) The pace of prostatic intraepithelial neoplasia development is determined by the timing of Pten tumor suppressor gene excision. PLoS One 3(12):e3940

    Article  PubMed  Google Scholar 

  • Lukacs RU et al (2010) Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell 7(6):682–693

    Article  PubMed  CAS  Google Scholar 

  • Ma X et al (2005) Targeted biallelic inactivation of Pten in the mouse prostate leads to prostate cancer accompanied by increased epithelial cell proliferation but not by reduced apoptosis. Cancer Res 65(13):5730–5739

    Article  PubMed  CAS  Google Scholar 

  • Maddison LA et al (2000) Prostate specific expression of Cre recombinase in transgenic mice. Genesis 26(2):154–156

    Article  PubMed  CAS  Google Scholar 

  • Maira SM et al (2008) Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 7(7):1851–1863

    Article  PubMed  CAS  Google Scholar 

  • Mani SA et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715

    Article  PubMed  CAS  Google Scholar 

  • Martin P et al (2011) Prostate epithelial Pten/TP53 loss leads to transformation of multipotential progenitors and epithelial to mesenchymal transition. Am J Pathol 179(1):422–435

    Article  PubMed  CAS  Google Scholar 

  • Mulholland DJ et al (2009) Lin-Sca-1+ CD49fhigh stem/progenitors are tumor-initiating cells in the Pten-null prostate cancer model. Cancer Res 69(22):8555–8562

    Article  PubMed  CAS  Google Scholar 

  • Mulholland DJ et al (2012) Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res 72(7):1878–1889

    Article  PubMed  CAS  Google Scholar 

  • Nacerddine K et al (2012) Akt-mediated phosphorylation of Bmi1 modulates its oncogenic potential, E3 ligase activity, and DNA damage repair activity in mouse prostate cancer. J Clin Invest 122(5):1920–1932

    Article  PubMed  CAS  Google Scholar 

  • Ogata R et al (2004) Identification of polycomb group protein enhancer of zeste homolog 2 (EZH2)-derived peptides immunogenic in HLA-A24+ prostate cancer patients. Prostate 60(4):273–281

    Article  PubMed  CAS  Google Scholar 

  • Patrawala L et al (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res 65(14):6207–6219

    Article  PubMed  CAS  Google Scholar 

  • Patrawala L et al (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25(12):1696–1708

    Article  PubMed  CAS  Google Scholar 

  • Pearson HB, Phesse TJ, Clarke AR (2009) K-ras and Wnt signaling synergize to accelerate prostate tumorigenesis in the mouse. Cancer Res 69(1):94–101

    Article  PubMed  CAS  Google Scholar 

  • Pece S et al (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140(1):62–73

    Article  PubMed  CAS  Google Scholar 

  • Richardson GD et al (2004) CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117(Pt 16):3539–3545

    Article  PubMed  CAS  Google Scholar 

  • Savona M, Talpaz M (2008) Getting to the stem of chronic myeloid leukaemia. Nat Rev Cancer 8(5):341–350

    Article  PubMed  CAS  Google Scholar 

  • Schlomm T et al (2008) Clinical significance of p53 alterations in surgically treated prostate cancers. Mod Pathol 21(11):1371–1378

    Article  PubMed  CAS  Google Scholar 

  • Shahi P et al (2011) Wnt and Notch pathways have interrelated opposing roles on prostate progenitor cell proliferation and differentiation. Stem Cells 29(4):678–688

    Article  PubMed  CAS  Google Scholar 

  • Sircar K et al (2009) PTEN genomic deletion is associated with p-Akt and AR signalling in poorer outcome, hormone refractory prostate cancer. J Pathol 218(4):505–513

    Article  PubMed  CAS  Google Scholar 

  • Squire JA (2009) TMPRSS2-ERG and PTEN loss in prostate cancer. Nat Genet 41(5):509–510

    Article  PubMed  CAS  Google Scholar 

  • Stiles BL et al (2006) Selective deletion of Pten in pancreatic beta cells leads to increased islet mass and resistance to STZ-induced diabetes. Mol Cell Biol 26(7):2772–2781

    Article  PubMed  CAS  Google Scholar 

  • Suva ML et al (2009) EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res 69(24):9211–9218

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H et al (2010) Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nat Med 16(12):1414–1420

    Article  PubMed  CAS  Google Scholar 

  • Taylor BS et al (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18(1):11–22

    Article  PubMed  CAS  Google Scholar 

  • Tran CP et al (2002) Prostate stem cell antigen is a marker of late intermediate prostate epithelial cells. Mol Cancer Res 1(2):113–121

    PubMed  CAS  Google Scholar 

  • Tsujimura A et al (2002) Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis. J Cell Biol 157(7):1257–1265

    Article  PubMed  CAS  Google Scholar 

  • van Leenders GJ et al (2007) Polycomb-group oncogenes EZH2, BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and clinical features. Eur Urol 52(2):455–463

    Article  PubMed  Google Scholar 

  • Vander Griend DJ et al (2008) The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells. Cancer Res 68(23):9703–9711

    Article  PubMed  CAS  Google Scholar 

  • Varambally S et al (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419(6907):624–629

    Article  PubMed  CAS  Google Scholar 

  • Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768

    Article  PubMed  CAS  Google Scholar 

  • Wang JC (2007) Evaluating therapeutic efficacy against cancer stem cells: new challenges posed by a new paradigm. Cell Stem Cell 1(5):497–501

    Article  CAS  Google Scholar 

  • Wang S et al (2003) Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4(3):209–221

    Article  PubMed  CAS  Google Scholar 

  • Wang S et al (2006) Pten deletion leads to the expansion of a prostatic stem/progenitor cell ­subpopulation and tumor initiation. Proc Natl Acad Sci USA 103(5):1480–1485

    Article  PubMed  CAS  Google Scholar 

  • Wang X et al (2009) A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461(7263):495–500

    Article  PubMed  CAS  Google Scholar 

  • Wu X et al (2001) Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mech Dev 101(1–2):61–69

    Article  PubMed  CAS  Google Scholar 

  • Xin L, Lawson DA, Witte ON (2005) The Sca-1 cell surface marker enriches for a prostate-­regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci USA 102(19):6942–6947

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz OH et al (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-­initiating cells. Nature 441(7092):475–482

    Article  PubMed  CAS  Google Scholar 

  • Zhang J et al (2006) PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441(7092):518–522

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q et al (2009) Nuclear factor-kappaB-mediated transforming growth factor-beta-induced expression of vimentin is an independent predictor of biochemical recurrence after radical prostatectomy. Clin Cancer Res 15(10):3557–3567

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z et al (2006) Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res 66(16):7889–7898

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wu M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mulholland, D.J., Wu, H. (2013). Genetic and Signaling Pathway Regulations of Tumor-Initiating Cells of the Prostate. In: Cramer, S. (eds) Stem Cells and Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6498-3_5

Download citation

Publish with us

Policies and ethics