Skip to main content

Formulation of Biotech Products, Including Biopharmaceutical Considerations

  • Chapter
  • First Online:
Pharmaceutical Biotechnology

Abstract

This chapter deals with formulation aspects of pharmaceutical proteins. Both technological questions and biopharmaceutical issues such as the choice of the delivery systems, the route of administration, and possibilities for target site-specific delivery of proteins are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alzet product information (2012) http://www.alzet.com/products/ALZET_Pumps/index.html

  • Arakawa T, Kita Y, Carpenter JF (1991) Protein-solvent interactions in pharmaceutical formulation. Pharm Res 8:285–291

    Article  PubMed  CAS  Google Scholar 

  • Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153:198–205

    Article  PubMed  CAS  Google Scholar 

  • Banerjee PS, Hosny EA, Robinson JR (1991) Parenteral delivery of peptide and protein drugs. In: Lee VHL (ed) Peptide and protein drug delivery. Marcel Dekker, Inc., New York, pp 487–543

    Google Scholar 

  • Björk E, Edman P (1988) Characterization of degradable starch microspheres as a nasal delivery system for drugs. Int J Pharm 62:187–192

    Article  Google Scholar 

  • Brange J, Langkjaer L (1993) Insulin structure and stability. In: Wang YJ, Pearlman R (eds) Stability and characterization of protein and peptide drugs. Case histories. Plenum Press, Inc, New York, pp 315–350

    Chapter  Google Scholar 

  • Chien YW (1991) Transdermal route of peptide and protein drug delivery. In: Lee VHL (ed) Peptide and protein drug delivery. Marcel Dekker, Inc., New York, pp 667–689

    Google Scholar 

  • Choudhari S, Mathew M, Verma RS (2011) Therapeutic potential of anticancer immunotoxins. Drug Discov Today 16:495–503

    Article  Google Scholar 

  • Constantino HR, Pikal MJ (2004) Lyophilization of biopharmaceuticals. AAPS Press, Arlington

    Google Scholar 

  • Crommelin DJA, Schreier H (1994) Liposomes. In: Kreuter J (ed) Colloidal drug delivery systems. Marcel Dekker, Inc., New York, pp 73–190

    Google Scholar 

  • Crommelin DJA, Storm G (1990) Drug targeting. In: Sammes PG, Taylor JD (eds) Comprehensive medicinal chemistry. Pergamon Press, Oxford, pp 661–701

    Google Scholar 

  • Crommelin DJA, Bergers J, Zuidema J (1992) Antibody-based drug targeting approaches: perspectives and challenges. In: Wermuth CG, Koga N, König H, Metcalf BW (eds) Medicinal chemistry for the 21st century. Blackwell Scientific Publications, Oxford, pp 351–365

    Google Scholar 

  • Crommelin DJA, Scherphof G, Storm G (1995) Active targeting with particulate carrier systems in the blood compartment. Adv Drug Deliv Rev 17:49–60

    Article  CAS  Google Scholar 

  • De Leede LGJ, Humphries JE, Bechet AC, Van Hoogdalem EJ, Verrijk R, Spencer DJ (2008) Novel controlled-release Lemna-derived IFN-α2b (Locteron): pharmacokinetics, pharmacodynamics, and tolerability in a phase I clinical trial. J Interferon Cytokine Res 28:113–122

    Article  PubMed  Google Scholar 

  • Delves PJ, Martin MS, Burton DR, Roitt IM (2011) Roitt’s essential immunology, 12th edn. Wiley-Blackwell, Oxford

    Google Scholar 

  • Edman P, Björk E (1992) Nasal delivery of peptide drugs. Adv Drug Deliv Rev 8:165–177

    Article  CAS  Google Scholar 

  • FDA (2010) http://www.fda.gov/BiologicsBloodVaccines/SafetyAvailability/VaccineSafety/UCM096228

  • Fendler JH (1980) Optimizing drug entrapment in liposomes. Chemical and biophysical considerations. In: Gregoriadis G, Allison AC (eds) Liposomes in biological systems. Wiley, Chichester, p 87

    Google Scholar 

  • Franks F, Hatley RHM, Mathias SF (1991) Materials science and the production of shelf-stable biologicals. Pharm Technol Int 3:24–34

    Google Scholar 

  • Gregoriadis G (2006) Liposome technology, 3rd edn. Informa Healthcare, New York

    Book  Google Scholar 

  • Groves M (1988) Parenteral technology manual. Interpharm Press, Inc., Buffalo Grove

    Google Scholar 

  • Halls NA (1994) Achieving sterility in medical and pharmaceutical products. Marcel Dekker, Inc., New York

    Google Scholar 

  • Heilmann K (1984) Therapeutic systems. Rate controlled delivery: concept and development. G. Thieme Verlag, Stuttgart

    Google Scholar 

  • Heller J (1993) Polymers for controlled parenteral delivery of peptides and proteins. Adv Drug Deliv Rev 10:163–204

    Article  CAS  Google Scholar 

  • Hellström KE, Hellström I, Goodman GE (1987) Antibodies for drug delivery. In: Robinson JR, Lee VHL (eds) Controlled drug delivery. Marcel Dekker, Inc., New York, pp 623–653

    Google Scholar 

  • Hernández RM, Orive G, Murua A, Pedraz JL (2010) Microcapsules and microcarriers for in situ cell delivery. Adv Drug Deliv Rev 62:711–730

    Article  PubMed  Google Scholar 

  • Holmes D (2011) Buy buy bispecific antibodies. Nat Rev Drug Discov 10:798–800

    Article  PubMed  CAS  Google Scholar 

  • Hovorka R (2011) Closed-loop insulin delivery: from bench to clinical practice. Nat Rev Endocrinol 7:385–395

    Article  PubMed  CAS  Google Scholar 

  • Hunt CA, MacGregor RD, Siegel RA (1986) Engineering targeted in vivo drug delivery. I. The physiological and physicochemical principles governing opportunities and limitations. Pharm Res 3:333–344

    Article  CAS  Google Scholar 

  • Jain RK (1987) Transport of molecules in the tumor interstitium: a review. Cancer Res 47:3039–3051

    PubMed  CAS  Google Scholar 

  • Jorgensen J, Nielsen HM (2009) Delivery technologies for biopharmaceuticals: peptides, proteins, nucleic acids and vaccines. Wiley, Chichester

    Book  Google Scholar 

  • Kersten G, Hirschberg H (2004) Antigen delivery systems. Expert Rev Vaccines 3:89–99

    Article  Google Scholar 

  • Kim SW, Pai CM, Makino K, Seminoff LA, Holmberg DL, Gleeson JM, Wilson DA, Mack EJ (1990) Self-regulated glycosylated insulin delivery. J Control Release 11:193–201

    Article  CAS  Google Scholar 

  • Kis EE, Winter G, Myschik J (2012) Devices for intradermal vaccination. Vaccine 30:523–538

    Article  PubMed  CAS  Google Scholar 

  • Klegerman ME, Groves MJ (1992) Pharmaceutical biotechnology: fundamentals and essentials. Interpharm Press, Inc., Buffalo Grove

    Google Scholar 

  • Kumar S, Char H, Patel S, Piemontese D, Malick AW, Iqbal K, Neugroschel E, Behl CR (1992) In vivo transdermal iontophoretic delivery of growth hormone releasing factor GRF (1–44) in hairless guinea pigs. J Control Release 18:213–220

    Article  CAS  Google Scholar 

  • Lammers T, Hennink WE, Storm G (2008) Tumour-targeted nanomedicines: principles and practice. Br J Cancer 99:392–397

    Article  PubMed  CAS  Google Scholar 

  • Maberly GF, Wait GA, Kilpatrick JA, Loten EG, Gain KR, Stewart RDH, Eastman CJ (1982) Evidence for insulin degradation by muscle and fat tissue in an insulin resistant diabetic patient. Diabetol 23:333–336

    Article  CAS  Google Scholar 

  • Mastrobattista E, van der Aa MAEM, Hennink WE, Crommelin DJA (2006) Artificial viruses: a nanotechnological approach to gene delivery. Nat Rev Drug Discov 5:115–121

    Article  PubMed  Google Scholar 

  • Mitragotri S (2005) Immunization without needles. Nat Rev Immunol 5:905–916

    Article  PubMed  CAS  Google Scholar 

  • Moeller EH, Jorgensen L (2009) Alternative routes of administration for systemic delivery of protein pharmaceuticals. Drug Discovery Today: Technologies 5:89–94

    Article  Google Scholar 

  • Nässander UK, Storm G, Peeters PAM, Crommelin DJA (1990) Liposomes. In: Chasin M, Langer R (eds) Biodegradable polymers as drug delivery systems. Marcel Dekker, New York, pp 261–338

    Google Scholar 

  • Nguyen TH, Ward C (1993) Stability characterization and formulation development of alteplase, a recombinant tissue plasminogen activator. In: Wang YJ, Pearlman R (eds) Stability and characterization of protein and peptide drugs. Case histories. Plenum Press, New York, pp 91–134

    Chapter  Google Scholar 

  • O’Hagan DT (1990) Intestinal translocation of particulates - implications for drug and antigen delivery. Adv Drug Deliv Rev 5:265–285

    Article  Google Scholar 

  • Patton JS, Trinchero P, Platz RM (1994) Bioavailability of pulmonary delivered peptides and proteins: alpha-interferon, calcitonin and parathyroid hormones. J Control Release 28:79–85

    Article  CAS  Google Scholar 

  • Patton JS, Bukar JG, Eldon MA (2004) Clinical pharmacokinetics and pharmacodynamics of inhaled insulin. Clin Pharmacokinet 43:781–801

    Article  PubMed  CAS  Google Scholar 

  • Pearlman R, Bewley TA (1993) Stability and characterization of human growth hormone. In: Wang YJ, Pearlman R (eds) Stability and characterization of protein and peptide drugs. Case histories. Plenum Press, New York, pp 1–58

    Chapter  Google Scholar 

  • Peeters PAM, Storm G, Crommelin DJA (1987) Immunoliposomes in vivo: state of the art. Adv Drug Deliv Rev 1:249–266

    Article  Google Scholar 

  • Pikal MJ (1990) Freeze-drying of proteins. Part I: process design. BioPharm 3(8):18–27

    CAS  Google Scholar 

  • Poste G (1985) Drug targeting in cancer therapy. In: Gregoriadis G, Poste G, Senior J, Trouet A (eds) Receptor-mediated targeting of drugs. Plenum Press, New York, pp 427–474

    Google Scholar 

  • Pristoupil TI (1985) Haemoglobin lyophilized with sucrose: effect of residual moisture on storage. Haematologia 18:45–52

    PubMed  CAS  Google Scholar 

  • Roy MJ (2011) Biotechnology operations: principles and practices. CRC Press, Boca Raton

    Google Scholar 

  • Sage BH, Bock CR, Denuzzio JD, Hoke RA (1995) Technological and developmental issues of iontophoretic transport of peptide and protein drugs. In: Lee VHL, Hashida M, Mizushima Y (eds) Trends and future perspectives in peptide and protein drug delivery. Harwood Academic Publishers GmbH, Chur, pp 111–134

    Google Scholar 

  • Schaepelynck P, Darmon P, Molines L, Jannot-Lamotte MF, Treglia C, Raccah D (2011) Advances in pump technology: insulin patch pumps, combined pumps and glucose sensors, and implanted pumps. Diabetes Metab 37:S85–S93

    Article  PubMed  CAS  Google Scholar 

  • Stenekes R (2000) Nanoporous dextran microspheres for drug delivery. Thesis, Utrecht University

    Google Scholar 

  • Storm G, Crommelin DJA (1998) Liposomes: quo vadis? Pharm Sci Tech Today 1:19–31

    Article  CAS  Google Scholar 

  • Storm G, Oussoren C, Peeters PAM, Barenholz YB (1993) Tolerability of liposomes in vivo. In: Gregoriadis G (ed) Liposome technology. CRC Press, Inc, Boca Raton, pp 345–383

    Google Scholar 

  • Storm G, Nässander U, Vingerhoeds MH, Steerenberg PA, Crommelin DJA (1994) Antibody-targeted liposomes to deliver doxorubicin to ovarian cancer cells. J Liposome Res 4:641–666

    Article  Google Scholar 

  • Supersaxo A, Hein WR, Steffen H (1990) Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res 7:167–169

    Article  PubMed  CAS  Google Scholar 

  • Thurow H, Geisen K (1984) Stabilization of dissolved proteins against denaturation at hydrophobic interfaces. Diabetologia 27:212–218

    PubMed  CAS  Google Scholar 

  • Tomlinson E (1987) Theory and practice of site-specific drug delivery. Adv Drug Deliv Rev 1:87–198

    Article  CAS  Google Scholar 

  • Traitel T, Goldbart R, Kost J (2008) Smart polymers for responsive drug-delivery systems. J Biomater Sci Polym Ed 19:755–767

    Article  PubMed  CAS  Google Scholar 

  • Tresco PA (1994) Encapsulated cells for sustained neurotransmitter delivery to the central nervous system. J Control Release 28:253–258

    Article  CAS  Google Scholar 

  • USP 29/NF 24 through second supplement (2006) United States Pharmacopeial Convention, Rockville

    Google Scholar 

  • Vemuri S, Yu CT, Roosdorp N (1993) Formulation and stability of recombinant alpha1-antitrypsin. In: Wang YJ, Pearlman R (eds) Stability and characterization of protein and peptide drugs. Plenum Press, New York, pp 263–286

    Chapter  Google Scholar 

  • Wang YJ, Watson MA (1988) Parenteral formulations of proteins and peptides: stability and stabilizers. J Parenter Sci Technol 42(Suppl 4S):1–26

    Google Scholar 

  • Woodle M, Newman M, Collins L, Redemann C, Martin F (1990) Improved long-circulating (Stealth®) liposomes using synthetic lipids. Proc Int Symp Contr Rel Bioact Mater 17:77–78

    Google Scholar 

  • Zhou XH, Li Wan Po A (1991a) Peptide and protein drugs: I. Therapeutic applications, absorption and parenteral administration. Int J Pharm 75:97–115

    Article  CAS  Google Scholar 

  • Zhou XH, Li Wan Po A (1991b) Peptide and protein drugs: II. Non-parenteral routes of delivery. Int J Pharm 75:117–130

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daan J. A. Crommelin Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Crommelin, D.J.A. (2013). Formulation of Biotech Products, Including Biopharmaceutical Considerations. In: Crommelin, D., Sindelar, R., Meibohm, B. (eds) Pharmaceutical Biotechnology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6486-0_4

Download citation

Publish with us

Policies and ethics