Skip to main content

Arithmetic of Del Pezzo surfaces

  • Chapter
  • First Online:
Birational Geometry, Rational Curves, and Arithmetic

Abstract

This survey is an introduction to the birational, qualitative arithmetic of del Pezzo surfaces over global fields: existence of rational points, weak approximation, Zariski density of points. We begin by reviewing the geometry of these surfaces over separably closed fields. We then show that del Pezzo surfaces of degree at least 5 that have a rational point are rational over their ground field, thereby proving they satisfy weak approximation and have a dense set of rational points. Finally, we discuss Brauer-Manin obstructions and give an example of one on a del Pezzo surface of degree 1.

Mathematics Subject Classification codes (2010): 14 G05, 14 J26, 11 G35.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Many authors refer only to the Hasse principle in the context of a class \(\mathcal{S}\) of varieties and say that \(\mathcal{S}\) satisfies the Hasse principle if for every \(X \in \mathcal{S}\), the implication X(k v )≠ for all \(v\in \Omega_k \implies X(k) \neq \emptyset\) holds.

References

  1. Birch, B. J. and Swinnerton-Dyer, H. P. F., The Hasse problem for rational surfaces, J. Reine Angew. Math. 274/275, 164–174, (1975).

    Google Scholar 

  2. Bosma, W., Cannon, J., and Playoust, C., The Magma algebra system. I. The user language, J. Symbolic Comput. 24, no. 3-4, 235–265, (1997).

    Google Scholar 

  3. Bright, M., Computations on diagonal quartic surfaces, 2002 Ph. D. thesis, University of Cambridge.

    Google Scholar 

  4. Bright, M., Brauer groups of diagonal quartic surfaces, J. Symbolic Comput. 41, no. 5, 544–558, (2006).

    Google Scholar 

  5. Bright, M., Bruin, N., Flynn, E. V., and Logan, A., The Brauer-Manin obstruction and Sh[2], LMS J. Comput. Math. 10, 354–377, (2007).

    Google Scholar 

  6. Châtelet, F., Variations sur un thème de H. Poincaré, Ann. Sci. École Norm. Sup. (3) 61, 249–300, (1944).

    Google Scholar 

  7. Colliot-Thélène, J.-L., Surfaces de Del Pezzo de degré 6, C. R. Acad. Sci. Paris Sér. A-B 275, A109–A111, (1972).

    Google Scholar 

  8. Colliot-Thélène, J.-L., Points rationnels sur les variétés non de type général. Chapitre II: Surfaces Rationnelles, (1999), available at http://www.math.u-psud.fr/~colliot/Cours.ChapII.dvi

  9. Colliot-Thélène, J.-L., Coray, D. and Sansuc, J.-J., Descente et principe de Hasse pour certaines variétés rationnelles, J. Reine Angew. Math. 320, 150–191, (1980).

    Google Scholar 

  10. Colliot-Thélène, J.-L., Kanevsky, D. and Sansuc, J.-J., Arithmétique des surfaces cubiques diagonales, in Diophantine approximation and transcendence theory, Lecture Notes in Math. 1290, 1–108, (1987).

    Google Scholar 

  11. Colliot-Thélène, J.-L., and Sansuc, J.-J., La descente sur une variété rationnelle définie sur un corps de nombres, C. R. Acad. Sci. Paris Sér. A-B 284, no. 19, A1215–A1218, (1977).

    Google Scholar 

  12. Colliot-Thélène, J.-L., and Sansuc, J.-J., La descente sur les variétés rationnelles, in Journées de Géometrie Algébrique d’Angers, Juillet 1979, Sijthoff & Noordhoff, Alphen aan den Rijn, 223–237.

    Google Scholar 

  13. Colliot-Thélène, J.-L., and Sansuc, J.-J., Sur le principe de Hasse et l’approximation faible, et sur une hypothèse de Schinzel, Acta Arith. 41, no. 1, 33–53, (1982).

    Google Scholar 

  14. Colliot-Thélène, J.-L., Sansuc, J.-J. and Swinnerton-Dyer, H. P. F., Intersections of two quadrics and Châtelet surfaces, J. Reine Angew. Math. 374, 72–168, (1987).

    Google Scholar 

  15. Coombes, K. R., Every rational surface is separably split, Comment. Math. Helv. 63, no. 2, 305–311, (1988).

    Google Scholar 

  16. Corn, P., The Brauer-Manin obstruction on del Pezzo surfaces of degree 2, Proc. London Math. Soc. (3) 95, no. 3, 735–777, (2007).

    Google Scholar 

  17. Cragnolini, P. and Oliverio, P. A., Lines on del Pezzo surfaces with K S 2 = 1 in characteristic ≠2, Comm. Algebra 27, no. 3, 1197–1206, (1999).

    Google Scholar 

  18. de Jong, A. J., A result of Gabber, Preprint available at http://www.math.columbia.edu/~dejong/papers/2-gabber.pdf

  19. Demazure, M., Surfaces de Del Pezzo II, III, IV, V, in Séminaire sur les Singularités des Surfaces, Lecture Notes in Math. 777, 23–69, (1980).

    Google Scholar 

  20. Federigo Enriques, Sulle irrazionalità da cui può farsi dipendere la risoluzione d’un’ equazione algebrica f(x,y,z) = 0 con funzioni razionali di due parametri, Math. Ann., 49 (1897), no. 1, 1–23.

    Google Scholar 

  21. Gille, P. and Szamuely, T., Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, vol. 101, Cambridge University Press, Cambridge, 2006.

    Google Scholar 

  22. Grothendieck, A., Le groupe de Brauer. I. Algèbres d’Azumaya et interprétations diverses, in Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, 1968, 46–66.

    Google Scholar 

  23. Harari, D., Weak approximation on algebraic varieties, in Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), Progr. Math., vol. 226, Birkhäuser Boston, Boston, 2004, 43–60.

    Google Scholar 

  24. Hartshorne, R., Algebraic geometry, Graduate Texts in Mathematics, vol. 52, Springer, New York, 1977.

    Google Scholar 

  25. Hassett, B., Rational surfaces over nonclosed fields, in Arithmetic geometry, Clay Math. Proc., vol. 8, Amer. Math. Soc., Providence, 2009, 155–209.

    Google Scholar 

  26. Iskovskikh, V. A., Minimal models of rational surfaces over arbitrary fields, Izv. Akad. Nauk SSSR Ser. Mat. 43, no. 1, 19–43, (1979).

    Google Scholar 

  27. Kleiman, S. L., The Picard scheme, in Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, Amer. Math. Soc., Providence, 2005, 235–321.

    Google Scholar 

  28. Kollár, J., Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 32, Springer, Berlin, 1996.

    Google Scholar 

  29. Kresch, A. and Tschinkel, Y., On the arithmetic of del Pezzo surfaces of degree 2, Proc. London Math. Soc. (3) 89, no. 3, 545–569, (2004).

    Google Scholar 

  30. Kresch, A. and Tschinkel, Y., Two examples of Brauer-Manin obstruction to integral points, Bull. Lond. Math. Soc. 40, no. 6, 995–1001, (2008).

    Google Scholar 

  31. Lang, S., Some applications of the local uniformization theorem, Amer. J. Math. 76, 362–374, (1954).

    Google Scholar 

  32. Lind, C.-E., Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins, 1940 Ph. D. Thesis, University of Uppsala.

    Google Scholar 

  33. Logan, A., The Brauer-Manin obstruction on del Pezzo surfaces of degree 2 branched along a plane section of a Kummer surface, Math. Proc. Cambridge Philos. Soc. 144, no. 3, 603–622, (2008).

    Google Scholar 

  34. Manin, Yu. I., Le groupe de Brauer-Grothendieck en géométrie diophantienne, in Actes du Congrès International des Mathématiciens (Nice, 1970), Gauthier-Villars, Paris, 1971, 401–411.

    Google Scholar 

  35. Manin, Yu. I., Cubic forms: algebra, geometry, arithmetic, North-Holland Publishing Co., Amsterdam, 1974.

    Google Scholar 

  36. Milne, J. S., Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, 1980.

    Google Scholar 

  37. Neukirch, J., Schmidt, A. and Wingberg, K., Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften, vol. 323, 2nd ed., Springer, Berlin, 2008.

    Google Scholar 

  38. Nishimura, H., Some remarks on rational points, Mem. Coll. Sci. Univ. Kyoto. Ser. A. Math., 29 (1955), 189–192.

    Google Scholar 

  39. Reichardt, H., Einige im Kleinen überall lösbare, im Grossen unlösbare diophantische Gleichungen, J. Reine Angew. Math. 184, 12–18, (1942).

    Google Scholar 

  40. Reichstein, Z. and Youssin, B., Essential dimensions of algebraic groups and a resolution theorem for G-varieties (With an appendix by János Kollár and Endre Szabó), Canad. J. Math. 52, no. 5, 1018–1056, (2000).

    Google Scholar 

  41. Serre, J.-P., Algebraic groups and class fields, Graduate Texts in Mathematics, vol. 117, Springer, New York, 1988.

    Google Scholar 

  42. Shepherd-Barron, N. I., The rationality of quintic Del Pezzo surfaces—a short proof, Bull. London Math. Soc. 24, no. 3, 249–250, (1992).

    Google Scholar 

  43. Shioda, T., On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul. 39, no. 2, 211–240, (1990).

    Google Scholar 

  44. Skorobogatov, A. N., On a theorem of Enriques-Swinnerton-Dyer, Ann. Fac. Sci. Toulouse Math. (6) 2, no. 3, 429–440, (1993).

    Google Scholar 

  45. Skorobogatov, A. N., Torsors and rational points, Cambridge Tracts in Mathematics, vol. 144, Cambridge University Press, Cambridge, 2001.

    Google Scholar 

  46. Swinnerton-Dyer, H. P. F., Two special cubic surfaces, Mathematika 9, 54–56, (1962).

    Google Scholar 

  47. Swinnerton-Dyer, H. P. F., Rational points on del Pezzo surfaces of degree 5, in Algebraic geometry, Oslo 1970 (Proc. Fifth Nordic Summer School in Math.), Wolters-Noordhoff, Groningen, 1972, 287–290.

    Google Scholar 

  48. Swinnerton-Dyer, H. P. F., The Brauer group of cubic surfaces, Math. Proc. Cambridge Philos. Soc. 113, no. 3, 449–460, (1993).

    Google Scholar 

  49. Swinnerton-Dyer, H. P. F., Brauer-Manin obstructions on some Del Pezzo surfaces, Math. Proc. Cambridge Philos. Soc. 125, no. 2, 193–198, (1999).

    Google Scholar 

  50. Várilly-Alvarado, A., Weak approximation on del Pezzo surfaces of degree 1, Adv. Math. 219, no. 6, 2123–2145, (2008).

    Google Scholar 

  51. Várilly-Alvarado, A., Arithmetic of del Pezzo surfaces of degree 1, 2009 Ph. D. thesis, University of California at Berkeley.

    Google Scholar 

Download references

Acknowledgments

I thank the conference organizers (Hendrik Lenstra, Cecilia Salgado, Lenny Taelman and Ronald van Luijk) for inviting me to give this minicourse and for their hospitality in Leiden. I also thank the staff at the Lorentz Center for all their help and professionalism. Finally, I thank Jean-Louis Colliot-Thélène for the comments on these notes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Várilly-Alvarado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Várilly-Alvarado, A. (2013). Arithmetic of Del Pezzo surfaces. In: Bogomolov, F., Hassett, B., Tschinkel, Y. (eds) Birational Geometry, Rational Curves, and Arithmetic. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6482-2_12

Download citation

Publish with us

Policies and ethics