Conclusions and Outlook

  • S. Mahdi Kashmiri
  • Kofi A. A. Makinwa
Part of the Analog Circuits and Signal Processing book series (ACSP)


This book has described the realization of frequency references based on the well-defined thermal diffusivity of IC-grade silicon. This chapter presents the main findings of the book. Furthermore, some suggestions for future work are presented.


  1. 1.
    Kashmiri SM et al (2010) A thermal-diffusivity-based frequency reference in standard CMOS with an absolute inaccuracy of ±0.1 % from −55 °C to 125 °C. IEEE J Solid-State Circ 45(12):2510–2520CrossRefGoogle Scholar
  2. 2.
    Kashmiri SM et al (2012) A scaled thermal-diffusivity-based frequency reference in 0.16 μm CMOS. Invited to the special issue of IEEE J Solid-State Circ 47(7):1535–1545Google Scholar
  3. 3.
    SiTime’s product selector sheet. Available online at:
  4. 4.
    De Smedt V et al (2009) A 66 μW 86 ppm/ °C fully-integrated 6 MHz wienbridge oscillator with a 172 dB phase noise FOM. IEEE J Solid-State Circ 44(7):1990–2001CrossRefGoogle Scholar
  5. 5.
    McCorquodale MS et al (2011) A history of the development of CMOS oscillators: the dark horse in frequency control. In: IEEE international frequency control symposium, San Francisco, CA, pp 437–442Google Scholar
  6. 6.
    Sundaresan K et al (2006) Process and temperature compensation in a 7-MHz CMOS clock oscillator. IEEE J Solid-State Circ 41(2):433–442CrossRefGoogle Scholar
  7. 7.
    Pertijs MAP, Huijsing JH (2006) Precision temperature sensors in CMOS technology. Springer, DordrechtGoogle Scholar
  8. 8.
    Kashmiri SM et al (2009) A temperature-to-digital converter based on an optimized electrothermal filter. IEEE J Solid-State Circ 44(7):2026–2035CrossRefGoogle Scholar
  9. 9.
    Makinwa KAA, Snoeij MF (2006) A CMOS temperature-to-frequency converter with an inaccuracy of less than ±0.5 °C (3σ) from −40 °C to 105 °C. IEEE J Solid-State Circ 41(12):2992–2997CrossRefGoogle Scholar
  10. 10.
    Kashmiri SM, Makinwa KAA (2009) A digitally-assisted electrothermal frequency-locked loop. In: Proceedings of the 35th ESSCIRC, Athens, Greece, pp 296–299Google Scholar
  11. 11.
    Vermeersch B (2009) Thermal AC modelling, simulation and experimental analysis of microelectronic structures including nanoscale and high-speed effects. Ph.D. dissertation, University of GentGoogle Scholar
  12. 12.
    Ju YS, Goodson KE (1999) Process-dependent thermal transport properties of silicon-dioxide films deposited using low-pressure chemical vapor deposition. J Appl Phys 85(10):7130–7134CrossRefGoogle Scholar
  13. 13.
    Khalil W et al (2011) A 700-μA 405-MHz all-digital fractional-N frequency-locked loop for ISM band applications. IEEE Trans Microw Theory Tech 59(5):1319–1326CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • S. Mahdi Kashmiri
    • 1
  • Kofi A. A. Makinwa
    • 2
  1. 1.Texas Instruments, Inc.DelftThe Netherlands
  2. 2.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations