A Scaled Electrothermal Frequency Reference in Standard 0.16μm CMOS

  • S. Mahdi Kashmiri
  • Kofi A. A. Makinwa
Part of the Analog Circuits and Signal Processing book series (ACSP)


The previous chapter described an implementation of an electrothermal (thermal-diffusivity-based) frequency reference. A prototype in a standard 0.7μm CMOS technology demonstrated the feasibility of such references. The inaccuracy of its 1.6MHz output frequency was ±0.1% over the military temperature range, and its cycle-to-cycle jitter was about 400ps (rms). This chapter describes the implementation of a scaled electrothermal frequency reference, whose performance is improved by means of scaling.


Output Frequency Phase Margin Previous Design Input Common Mode Sampling Capacitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kent JP et al (2008) Microelectronics for the real world: ‘Moore’ versus ‘More than Moore’. In: Proceedings of the IEEE custom integrated circuit conference (CICC), San Jose, CA, pp 395–402Google Scholar
  2. 2.
    Howard J et al (2010) A 48-Core IA-32 Processor in 45 nm CMOS using on-die message-passing and DVFS for performance and power scaling. IEEE J Solid-State Circ 46(1):173–183CrossRefGoogle Scholar
  3. 3.
    Razavi B (2001) Design of analog CMOS integrated circuits. McGraw-Hill, New YorkGoogle Scholar
  4. 4.
    van Vroonhoven CPL et al (2010) A thermal-diffusivity-based temperature sensor with an untrimmed inaccuracy of ±0.2 °C (3σ) from −55 °C to 125 °C. In: IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, pp 314–315Google Scholar
  5. 5.
    Kashmiri SM et al (2011) A scaled thermal-diffusivity-based frequency reference in 0.16 μm CMOS. In: IEEE 37th European solid-state circuits conference, ESSCIRC, HelsinkiGoogle Scholar
  6. 6.
    Kashmiri SM et al (2010) A thermal-diffusivity-based frequency reference in standard CMOS with an absolute inaccuracy of ±0.1 % from −55 °C to 125 °C. IEEE J Solid-State Circ 45(12):2510–2520CrossRefGoogle Scholar
  7. 7.
    Makinwa KAA, Snoeij MF (2006) A CMOS temperature-to-frequency converter with an inaccuracy of less than ±0.5 °C (3σ) from −40 °C to 105 °C. IEEE J Solid-State Circ 41(12):2992–2997CrossRefGoogle Scholar
  8. 8.
    Makinwa KAA, Matova SP, Huijsing JH (2001) Thermopile design for a CMOS wind-sensor. In: National Dutch Sensor conference, The Netherlands, May 2001, pp 77–82Google Scholar
  9. 9.
    Huijsing JH (2011) Operational amplifiers, theory and design, 2nd edn. Springer, DordrechtCrossRefGoogle Scholar
  10. 10.
    Witte JF et al (2009) Dynamic offset compensated CMOS amplifiers. Springer, DordrechtCrossRefGoogle Scholar
  11. 11.
    Pertijs MAP, Huijsing JH (2006) Precision temperature sensors in CMOS technology. Springer, DordrechtGoogle Scholar
  12. 12.
    Pertijs MAP et al (2008) Bitstream-controlled reference signal generation for a sigma-delta modulator. US Patent 7,391,351, June 2008Google Scholar
  13. 13.
    Schreier R, Temes GC (2005) Understanding delta-sigma data converters. Wiley, HobokenGoogle Scholar
  14. 14.
    Zhang C, Makinwa KAA (2008) Interface electronics for a CMOS electrothermal frequency-locked-loop. IEEE J Solid-State Circ 43(7):1603–1608CrossRefGoogle Scholar
  15. 15.
    Choe K et al (2009) A precision relaxation oscillator with a self-clocked offset-cancellation scheme for implantable biomedical SoCs. In: IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, February 2009, pp 402–403Google Scholar
  16. 16.
    Souri K et al (2010) A CMOS temperature sensor with an energy-efficient zoom ADC and an Inaccuracy of ±0.25 °C (3σ) from −40 °C to 125 °C. In: ISSCC Dig. Tech. Papers, San Francisco, CA, February 2010, pp 310–311Google Scholar
  17. 17.
    Souri K et al (2010) A 0.122 mm2 7.4 μW micropower temperature sensor with an inaccuracy of ±0.2 °C (3σ) from −30 °C to 125 °C. In: Proceedings of the IEEE ESSCIRC 2010, Seville, Spain, pp 282–285Google Scholar
  18. 18.
    ADG719 data sheet.
  19. 19.
    McCorquodale MS et al (2010) A silicon die as a frequency source. In: Proceedings of the IEEE international frequency control symposium, June 2010, Newport Beach, California, pp 103–108Google Scholar
  20. 20.
    McCorquodale MS et al (2011) A history of the development of CMOS oscillators: the dark horse in frequency control. In: IEEE international frequency control symposium, San Francisco, CA, pp 437–442Google Scholar
  21. 21.
    Tokunaga Y et al (2010) An on-chip CMOS relaxation oscillator with voltage averaging feedback. IEEE J Solid-State Circ 45(6):1150–1158CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • S. Mahdi Kashmiri
    • 1
  • Kofi A. A. Makinwa
    • 2
  1. 1.Texas Instruments, Inc.DelftThe Netherlands
  2. 2.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations