Advertisement

An Electrothermal Frequency Reference in Standard 0.7 μm CMOS

  • S. Mahdi Kashmiri
  • Kofi A. A. Makinwa
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

This chapter describes the design and implementation of an electrothermal (thermal-diffusivity-based) frequency reference in standard 0.7 μm CMOS. The reference locks the output frequency of a variable oscillator using a frequency-locked loop to the process-insensitive phase shift of an electrothermal filter. This is in turn a function of the thermal-diffusivity of silicon, which is temperature dependent. Therefore, the loop needs to be temperature-compensated. To do this, the digital output of an on-chip band-gap temperature sensor is applied to the digitally-assisted frequency-locked loop that was described in the previous chapter. The result is a frequency reference in a 0.7 μm standard CMOS whose output frequency is stable to within ±0.1% over the military temperature range (-55°C to 125°C).

Keywords

Temperature Compensation Output Frequency Bipolar Transistor Loop Filter Sampling Capacitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Tokunaga Y et al (2010) An on-chip CMOS relaxation oscillator with voltage averaging feedback. IEEE J Solid-State Circ 45(6):1150–1158CrossRefGoogle Scholar
  2. 2.
    De Smedt V et al (2009) A 66 μW 86 ppm/ °C fully-integrated 6 MHz Wienbridge oscillator with a 172 dB phase noise FOM. IEEE J Solid-State Circ 44(7):1990–2001CrossRefGoogle Scholar
  3. 3.
    McCorquodale MS et al (2007) A monolithic and self-referenced RF LC clock generator compliant with USB 2.0. IEEE J Solid-State Circ 42(2):385–399CrossRefGoogle Scholar
  4. 4.
    McCorquodale MS et al (2008) A 0.5-to-480 MHz self-referenced CMOS clock generator with 90 ppm total frequency error and spread-spectrum capability. In: IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, pp 350–351Google Scholar
  5. 5.
    McCorquodale MS et al (2010) A silicon die as a frequency source. In: Proceedings of the IEEE international frequency control symposium, Newport Beach, California, June 2010, pp 103–108Google Scholar
  6. 6.
    McCorquodale MS et al (2011) A history of the development of CMOS oscillators: the dark horse in frequency control. In: IEEE international frequency control symposium, San Francisco, CA, pp 437–442Google Scholar
  7. 7.
    Sundaresan K et al (2006) Process and temperature compensation in a 7-MHz CMOS clock oscillator. IEEE J Solid-State Circ 41(2):433–442CrossRefGoogle Scholar
  8. 8.
    Foley DJ et al (2006) CMOS DLL-based 2-V 3.2-ps jitter 1-GHz clock synthesizer and temperature-compensated tunable oscillator. IEEE J Solid-State Circ 36:417–423CrossRefGoogle Scholar
  9. 9.
    Makinwa KAA, Snoeij MF (2006) A CMOS temperature-to-frequency converter with an inaccuracy of less than ±0.5 °C (3σ) from −40 °C to 105 °C. IEEE J Solid-State Circ 41(12):2992–2997CrossRefGoogle Scholar
  10. 10.
    Szekely V (1994) Thermal monitoring of microelectronic structures. Microelectron J 25(3):157–170MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kashmiri SM et al (2009) A temperature-to-digital converter based on an optimized electrothermal filter. IEEE J Solid-State Circ 44(7):2026–2035CrossRefGoogle Scholar
  12. 12.
    Pertijs MAP et al (2005) A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1 °C from −55 °C to 125 °C. IEEE J Solid-State Circ 40(12):2805–2815CrossRefGoogle Scholar
  13. 13.
    Kashmiri SM, Makinwa KAA (2009) A digitally-assisted electrothermal frequency-locked loop. In: Proceedings of the 35th ESSCIRC, Athens, Greece, pp 296–299Google Scholar
  14. 14.
    Kashmiri SM, Makinwa KAA (2009) Measuring the thermal diffusivity of CMOS chips. In: Proceedings of the IEEE sensors, Christ church, New Zealand, pp 45–48Google Scholar
  15. 15.
    van Vroonhoven CPL et al (2010) A thermal-diffusivity-based temperature sensor with an untrimmed inaccuracy of ±0.2 °C (3σ) from −55 °C to 125 °C. In: IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, pp 314–315Google Scholar
  16. 16.
    Chen P et al (2009) A time-domain sub-micro watt temperature sensor with digital set-point programming. IEEE Sens J 9(12):1639–1646CrossRefGoogle Scholar
  17. 17.
    Tuthill M (1998) A switched-current, switched-capacitor temperature sensor in 0.6 μ CMOS. IEEE J Solid-State Circ 33(7):1117–1122CrossRefGoogle Scholar
  18. 18.
    Meijer GCM et al (2001) Temperature sensors and voltage references implemented in CMOS technology. IEEE Sens J 1(3):225–234MathSciNetCrossRefGoogle Scholar
  19. 19.
    Pertijs MAP, Huijsing JH (2006) Precision temperature sensors in CMOS technology. Springer, DordrechtGoogle Scholar
  20. 20.
    Aita AL et al (2009) A CMOS smart temperature sensor with a batch-calibrated inaccuracy of ±0.25 °C (3σ) from −70 °C to 130 °C. In: IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, pp 342–343Google Scholar
  21. 21.
    Sebastiano F (2010) A 1.2-V 10-μW NPN-based temperature sensor in 65-nm CMOS with an inaccuracy of 0.2 °C (3σ) from −70 C to 125 °C. IEEE J Solid-State Circ 45(12):2591–2601CrossRefGoogle Scholar
  22. 22.
    Souri K et al (2010) A CMOS temperature sensor with an energy-efficient zoom ADC and an inaccuracy of ±0.25 °C (3σ) from −40 °C to 125 °C. In: ISSCC Dig. Tech. Papers, February 2010, San Francisco, CA, pp 310–311Google Scholar
  23. 23.
    Kashmiri SM et al (2010) A thermal-diffusivity-based frequency reference in standard CMOS with an absolute inaccuracy of ±0.1 % from −55 °C to 125 °C. IEEE J Solid-State Circ 45(12):2510–2520CrossRefGoogle Scholar
  24. 24.
    Brokaw AP (1974) A simple three-terminal IC bandgap reference. IEEE J Solid-State Circ 9(6):388–393CrossRefGoogle Scholar
  25. 25.
    Gray PR, Meyer RG (2001) Analysis and design of analog integrated circuits, 4th edn. Wiley. New York, ISBN 0-471-32168-0Google Scholar
  26. 26.
    Schreier R, Temes GC (2005) Understanding delta-sigma data converters. Wiley, ChichesterGoogle Scholar
  27. 27.
    Temes G, Steensgaard J (2007) Structural optimization and scaling of delta-sigma modulators. In: Lecture notes of MEAD advanced engineering course on delta sigma modulators, Lausanne, SwitzerlandGoogle Scholar
  28. 28.
    Pertijs MAP et al (2004) Bitstream trimming of a smart temperature sensor. In: Proceedings of the IEEE sensors, Vienna, Austria, pp 904–907Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • S. Mahdi Kashmiri
    • 1
  • Kofi A. A. Makinwa
    • 2
  1. 1.Texas Instruments, Inc.DelftThe Netherlands
  2. 2.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations