Advertisement

Frequency References Based on the Thermal Properties of Silicon

  • S. Mahdi Kashmiri
  • Kofi A. A. Makinwa
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

This chapter introduces the concept of on-chip frequency generation based on the thermal properties of silicon. Thermal-diffusivity of silicon, D, will be introduced as the rate at which heat diffuses through a silicon substrate. It will be described how an electrothermal filter (ETF) harnesses this physical property in order to produce accurate on-chip delays. The design of a practical ETF within standard CMOS processes will be described. It will be shown that an ETF behaves like a low-pass filter with a defined phase shift, which is a combined function of its geometry and D. Furthermore, a method of frequency generation based on an electrothermal frequency-locked loop (FLL) will be introduced. Such loop locks the output frequency of a variable oscillator to the phase shift of an ETF.

Keywords

Thermal Noise Output Frequency Synchronous Demodulator Loop Bandwidth Noise Bandwidth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hamann HF et al (2007) Hotspot-limited microprocessors: direct temperature and power distribution measurements. IEEE J Solid-State Circ 42(1):56–65CrossRefGoogle Scholar
  2. 2.
    Trimmer W (1997) Micromechanics and MEMs: classic and seminal papers to 1990. IEEE publications, New York, pp 353–433. ISBN 9780470545263CrossRefGoogle Scholar
  3. 3.
    Gray PR, Hamilton DJ (1971) Analysis of electrothermal integrated circuits. IEEE J Solid-State Circ 6(1):8–14CrossRefGoogle Scholar
  4. 4.
    Matzen WT et al (1964) Thermal techniques as applied to functional electronic blocks. Proc IEEE 2:1496–1501CrossRefGoogle Scholar
  5. 5.
    Friedman MF (1969) Monolithic high-Q bandpass filters employing electrothermal circuits. Ph.D. dissertation, Department of Electrical and Computer Engineering, University of Arizona, TucsonGoogle Scholar
  6. 6.
    Szekely V (1994) Thermal monitoring of microelectronic structures. Microelectron J 25(3):157–170MathSciNetCrossRefGoogle Scholar
  7. 7.
    Szekely V et al (1995) A new monolithic temperature sensor: the thermal feedback oscillator. In: Proceedings of the transducers, Stockholm, Sweden, June 1995, pp 124–127Google Scholar
  8. 8.
    Bosch G (1972) A thermal oscillator using the thermo-electric (seebeck) effect in silicon. Solid State Electron 15(8):849–852MathSciNetCrossRefGoogle Scholar
  9. 9.
    Turkes P (1983) An ion-implanted resistor as thermal transient sensor for the determination of the thermal diffusivity in silicon. Physica Status Solidi A 75(2):519–523CrossRefGoogle Scholar
  10. 10.
    Touloukian YS et al (1998) Thermophysical properties of matter, vol 10. Plenum, New YorkGoogle Scholar
  11. 11.
    Vermeersch B (2009) Thermal AC modelling, simulation and experimental analysis of microelectronic structures including nanoscale and high-speed effects. Ph.D. dissertation, University of GentGoogle Scholar
  12. 12.
    Veijola T (1996)“Simple model for thermal spreading impedance. In: Proceedings of the BEC’96, Tallinn, Estonia, October 1996, pp 73–76Google Scholar
  13. 13.
    Makinwa KAA, Snoeij MF (2006) A CMOS temperature-to-frequency converter with an inaccuracy of less than ±0.5 °C (3σ) from −40 °C to 105 °C. IEEE J Solid-State Circ 41(12):2992–2997CrossRefGoogle Scholar
  14. 14.
    van Herwaarden AW, Sarro PM (1986) Thermal sensors based on the seebeck effect. Sens Actuat 10:321–346CrossRefGoogle Scholar
  15. 15.
    Xia S, Makinwa KAA (2007) Design of an optimized electrothermal filter for a temperature-to-frequency converter. In: Proceedings of the IEEE sensors, Atlanta, GA, October 2007, pp 1255–1258Google Scholar
  16. 16.
    Kashmiri SM et al (2009) A temperature-to-digital converter based on an optimized electrothermal filter. IEEE J Solid-State Circ 44(7):2026–2035CrossRefGoogle Scholar
  17. 17.
    Makinwa KAA (2004) Flow sensing with thermal sigma-delta modulators. Ph.D. dissertation, Delft University of Technology, DelftGoogle Scholar
  18. 18.
    Hirai T, Asai T, Amemiya Y (2010) A CMOS phase-shift oscillator based on the conduction of heat. J Circuit Syst Comput 19(4):763–772CrossRefGoogle Scholar
  19. 19.
    Makinwa KAA, Witte JF (2005) A temperature sensor based on a thermal oscillator. In: Proceedings of the IEEE sensors, Irvine, CA, pp 1149–1152Google Scholar
  20. 20.
    Bakker A, Huijsing JH (1996) Micropower CMOS temperature sensor with digital output. IEEE J Solid-State Circ 31(7):933–937CrossRefGoogle Scholar
  21. 21.
    Zhang C, Makinwa KAA (2008) Interface electronics for a CMOS electrothermal frequency-locked-loop. IEEE J Solid-State Circ 43(7):1603–1608CrossRefGoogle Scholar
  22. 22.
    Pertijs MAP et al (2005) A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1 °C from −55 °C to 125 °C. IEEE J Solid-State Circ 40(12):2805–2815CrossRefGoogle Scholar
  23. 23.
    Razavi B (2001) Design of analog CMOS integrated circuits. McGraw-Hill, New YorkGoogle Scholar
  24. 24.
    Johns DA, Martin K (1997) Analog integrated circuit design. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • S. Mahdi Kashmiri
    • 1
  • Kofi A. A. Makinwa
    • 2
  1. 1.Texas Instruments, Inc.DelftThe Netherlands
  2. 2.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations