• S. Mahdi Kashmiri
  • Kofi A. A. Makinwa
Part of the Analog Circuits and Signal Processing book series (ACSP)


The operation and performance of electronic systems depends on the accuracy of timing signals. For decades, these signals have been generated by quartz crystal oscillators, which cannot be integrated into microchips. A lot of efforts have been dedicated to the realization of integrated frequency references, resulting in various types of silicon-based frequency references. Some combine a MEMS (Micro Electro Mechanical System) resonator with a silicon chip, while others rely on integrated resistors, capacitors, or inductors. This book describes an alternative approach to the realization of integrated frequency references. Unlike others, it does not rely on the accuracy of on-chip electrical components. Instead, it relies on the thermal properties of bulk silicon, harnessed by electrothermal structures. The operation of such structures is governed by a physical parameter: thermal-diffusivity, a measure of the rate at which heat diffuses through a silicon substrate. This book shows various standard CMOS prototypes with output frequencies up to 16MHz and stabilities of ±0.1% over the military temperature range (-55°C to 125°C). Realizations in scaled processes show that electrothermal frequency references benefit from CMOS scaling.


Phase Noise Frequency Reference Temperature Compensation Output Frequency Thermal Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Allan D et al (1997) The science of timekeeping. HP Application Note 1289Google Scholar
  2. 2.
    The Wikipedia page on frequency to be found on-line at:
  3. 3.
    Jespersen J, Fitz-Randolph J (1999) From sundials to atomic clocks: understanding time and frequency. National Institute of Standards and Technology, Dover Publications, Inc., Mineola, New YorkGoogle Scholar
  4. 4.
    IEEE Standard definitions of physical quantities for fundamental frequency and time metrology – random instabilities. IEEE std. 1139–1999, 1999Google Scholar
  5. 5.
    Clock Jitter and Phase Noise Conversion, Application Note 3359, by Maxim. Available online at:
  6. 6.
    Overview on Phase Noise and Jitter, Agilent Technologies. Available online at:
  7. 7.
    Hajimiri A, Limotyrakis S, Lee TH (1999) Jitter and phase noise in ring oscillators. IEEE J Solid-State Circ 34:790–804CrossRefGoogle Scholar
  8. 8.
    Agilent Signal Generator Spectral Purity, Application Note 388. Available online at:
  9. 9.
    Bottom VE (1981) A history of the quartz crystal industry in the USA. In: IEEE annual frequency control symposium, Philadelphia, PA, pp 3–12Google Scholar
  10. 10.
    Lam CS (2008) A review of the recent development of MEMS and crystal oscillators and their impacts on the frequency control products industry. In: IEEE ultrasonic symposium, Beijing, China, pp 694–704Google Scholar
  11. 11.
    Wan-Thai Hsu et al (2007) The new heart beat of electronics – Silicon MEMS oscillators. In: IEEE electronic components and technology conference, ECTC, Reno, Nevada, pp 1895–1899Google Scholar
  12. 12.
    SiTime’s product selector sheet. Available online at:
  13. 13.
    McCorquodale MS et al (2010) A silicon die as a frequency source. In: IEEE international frequency control symposium, Newport Beach, California, pp 103–108Google Scholar
  14. 14.
    De Smedt V et al (2009) A 66 μW 86 ppm/  °C fully-integrated 6 MHz wienbridge oscillator with a 172 dB phase noise FOM. IEEE J Solid-State Circ 44(7):1990–2001CrossRefGoogle Scholar
  15. 15.
    Gray PR, Hamilton DJ (1971) Analysis of electrothermal integrated circuits. IEEE J Solid-State Circ sc-6(1):8–14Google Scholar
  16. 16.
    Freidman MF, Hamilton DJ (1970) An integrated high-Q bandpass filter. In: IEEE international solid-state circuits conference, San Francisco, CA, February 1970, pp 162–163Google Scholar
  17. 17.
    Bosch G (1972) A thermal oscillator using the thermo-electric (seebeck) effect in silicon. Elsevier’s Solid-State Electron 15:849–852MathSciNetCrossRefGoogle Scholar
  18. 18.
    Wikipedia page on the thermoelectric effect. Available online at:
  19. 19.
    Szekely V et al (1995) A new monolithic temperature sensor: the thermal feedback oscillator. In: Proceedings of the transducers, STOCKHOLM, SWEDEN, June 1995, pp 124–127Google Scholar
  20. 20.
    Wikipedia page on phonons. Available online at:
  21. 21.
    Ebrahimi J (1970) Thermal diffusivity measurement of small silicon chips. J Phys D Appl Phys 3:236–239CrossRefGoogle Scholar
  22. 22.
    Touloukian YS et al (1998) Thermophysical properties of matter, vol 10. Plenum, New YorkGoogle Scholar
  23. 23.
    Makinwa KAA, Snoeij MF (2006) A CMOS temperature-to-frequency converter with an inaccuracy of less than ±0.5 °C (3σ) from −40 °C to 105 °C. IEEE J Solid-State Circ 41(12):2992–2997CrossRefGoogle Scholar
  24. 24.
    van Vroonhoven CPL et al (2010) A thermal-diffusivity-based temperature sensor with an untrimmed inaccuracy of ±0.2 °C (3σ) from −55 °C to 125 °C. In: IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, pp 314–315Google Scholar
  25. 25.
    Wikipedia page on Moore’s law. Available online at:’s_law
  26. 26.
    van Vroonhoven CPL et al (2008) A CMOS temperature to digital converter with an inaccuracy of ±0.5 °C (3σ) from −55 to 125 °C. In: IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, pp 576–577Google Scholar
  27. 27.
    Pertijs MAP, Huijsing JH (2006) Precision temperature sensors in CMOS technology. Springer, DordrechtGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • S. Mahdi Kashmiri
    • 1
  • Kofi A. A. Makinwa
    • 2
  1. 1.Texas Instruments, Inc.DelftThe Netherlands
  2. 2.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations