Skip to main content

Biological Effects of Boron

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 225))

Abstract

Boron, which bears the symbol B in the periodical table, is a semiconductive element with properties between that of a metal and a nonmetal (Kılıç et al. 2009). This micro-mineral is ingested with foods on a daily basis, and the amount taken in varies with the levels that occur in the consumed food and drink (Sabuncuoglu et al. 2006). This element is a chemically dynamic trace element that forms approximately 230 compounds, generally with other elements (World Health Organization 1998; Kılıç et al. 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed I, Fujiwara T (2010) Mechanism of boron tolerance in soil bacteria. Canadian J Microbiol 56(1):22–26

    CAS  Google Scholar 

  • Anderson DL, Cunningham WC, Lindstrom TR (1994) Concentrations and intakes of H, B, S, K, Na, Cl, and NaCl in foods. J Food Comp Anal 7:59–82

    CAS  Google Scholar 

  • Argust P (1998) Distribution of boron in the environment. Biol Tr Elem Res 66:131–143

    CAS  Google Scholar 

  • Armstrong TA, Spears JW, Crenshaw TD, Nielsen FH (2000) Boron supplementation of a semipurified diet for weanling pigs improves feed efficiency and bone strength characteristics and alters plasma lipid metabolites. J Nutr 130:2575–2581

    CAS  Google Scholar 

  • Auffermann W, Wagner S, Wu S, Buser P, Parmley W, Wikman-Coffelt J (1990) Calcium inhibition of glycolysis contributes to ischaemic injury. Cardio vasc Res 24:510–520

    CAS  Google Scholar 

  • Bai Y, Hunt CD (1996) Dietary boron enhances efficacy of cholecalciferol in broiler chicks. J Trace Elem Exp Med 9:117–132

    CAS  Google Scholar 

  • Baker SJ, Ding CZ, Akama T, Zhang YK, Hernandez V, Xia Y (2009) Therapeutic potential of boron-containing compounds. Future Med Chem 1(7):1275–1288

    CAS  Google Scholar 

  • Bakken NA, Hunt CD (2003) Dietary boron decreases peak pancreatic in situ insulin release in chicks and plasma insulin concentrations in rats regardless of vitamin D or magnesium status. J Nutr Nov 133(11):3577–3583

    CAS  Google Scholar 

  • Basoglu A, Sevinc M, Guzelbektas H, Civelek T (2000) Effect of borax on lipid profile in dogs. Online J Vet Res 4(6):153–156

    Google Scholar 

  • Basoglu A, Sevinç M, Birdane FM, Boydak M (2002) Efficacy of sodium borate in the prevention of fatty liver in dairy cows. J Vet Intern Med 16:732–735

    Google Scholar 

  • Basoglu A, Baspinar N, Ozturk AS, Akalin PP (2010) Effects of boron administration on hepatic steatosis, hematological and biochemical profiles in obese rabbits. Trace Elements and Electrolytes 27:225–231

    CAS  Google Scholar 

  • Basoglu A, Baspinar N, Ozturk AS, Akalin PP (2011) Effects of long-term boron administration on high-energy diet-induced obesity in rabbits: NMR-based metabonomic evaluation. J Anim and Veterinary Adv 10(12):1512–1515

    CAS  Google Scholar 

  • Blevins DG, Lukaszewski KM (1994) Proposed physiologic functions of boron in plants pertinent to animal and human metabolism. Environ Health Perspect 102(Suppl 7):31–33

    CAS  Google Scholar 

  • Blevins DG, Lukaszewski KM (1998) Boron in plant structure and function. Annu Rev Plant Physiol Plant Mol Biol 49:481–500

    CAS  Google Scholar 

  • Bobe G, Young JW, Beitz DC (2004) Pathology, etiology, prevention, and treatment of fatty liver in dairy cows. J Dairy Sci 87:3105–3124

    CAS  Google Scholar 

  • Bolaños L, Lukaszewski K, Bonilla I, Blevins D (2004) Why boron? Plant Physiol Biochem 42:907–912

    Google Scholar 

  • Camacho-Cristóbal JJ, Rexach J, Fontes AG (2008) Boron in plants: deficiency and toxicity. Journal of Integrative Plant Biolo 50(10):1247–1255

    Google Scholar 

  • Clark WB, Koekebakker M, Barr RD, Dowining RG, Fleming RF (1987) Analysis of ultratrace lithium and boron by neutron activation and mass-spectrometric measurement of 3He and 4He. Appl Radiat Isot 38:735–743

    Google Scholar 

  • Cookson LJ, Pham K (1995) Relative tolerance of twenty Basidiomycetes to boric acid. Material Organismen 29:187–196

    CAS  Google Scholar 

  • Dani HM, Saini HS, Allag IS, Singh B, Sareen K (1971) Effect of boron toxicity on protein andnucleic acid contents of rat tissues. Res Bull Panjab Univ Sci 22(1–2):229–235

    CAS  Google Scholar 

  • Davis W, Matthews J, Goodman D (1989) Glyoxylate cycle in the rat liver: effect of vitamin D3 treatment. FASEB J 3:1651–1655

    CAS  Google Scholar 

  • Deal WJ (1969) Metabolic control and structure of glycolytic enzymes IV. Nicotinamide-adenine dinucleotide dependent in vitro reversal of dissociation and possible in vivo control of yeast glyceraldehyde 3-phosphate dehydrogenase synthesis. Biochemistry 8:2795–2805

    CAS  Google Scholar 

  • Deitrich R (1967) Diphosphopyridine nucleotide-linked aldehyde dehydrogenase III. Sulfhydryl characteristics of the enzyme. Arch Biochem Biophys 119:253–263

    CAS  Google Scholar 

  • DeLuca H, Schnoes H (1983) Vitamin D: recent advances. Ann Rev Biochem 52:411–439

    CAS  Google Scholar 

  • Deviran TA, Volpe SL (2003) The physiological effects of dietary boron. Crit Rev Food Sci and Nutrit 43(2):219–231

    Google Scholar 

  • Dugger W (1983) Boron in plant metabolism. In: Lauchli A, Bielesk R (eds) Encyclopedia of plant physiology. Inorganic plant nutrition, vol 15. Springer-Verlag, Berlin, pp 626–650

    Google Scholar 

  • Duydu Y, Basaran N, Bolt HM (2012) Exposure assessment of boron in Bandırma boric acid production plant. J Trace Elem Med Biol 26(2–3):161–164

    CAS  Google Scholar 

  • Eckhert CD (1998) Boron stimulates embryonic trout growth. J Nutr 128:2488–2493

    CAS  Google Scholar 

  • EPA (U.S. Environmental Protection Agency) (2008) Health effects support document for boron. EPA document number EPA-822-R-08-002 January

    Google Scholar 

  • Fort DJ, Stover EL, Strong PL, Murray FJ, Keen CL (1999) Chronic feeding of a low boron diet adversely affects reproduction and development in Xenopus laevis. J Nutr 129:2055–2060

    CAS  Google Scholar 

  • Fry RS, Lloyd KE, Jacobi SK, Siciliano PD, Robarge WP, Spears JW (2010) Effect of dietary boron on immune function in growing beef steers. J Anim Physiol AnimNutrit 94:273–279

    CAS  Google Scholar 

  • Gedik O, Akalin S (1986) Effects of vitamin D deficiency and repletion on insulin and glucagon secretion in man. Diabetologia 29:142–145

    CAS  Google Scholar 

  • Goldbach HE (1997) A critical review on current hypotheses concerning the role of boron in higher plants: suggestions for further research and methodological requirements. J Trace Microprobe Tech 15:51–91

    CAS  Google Scholar 

  • Gordon AS, Prichard JS, Freedman MH (1973) Seizure disorders and anaemia associated with chronic borax intoxication. Can Med Assoc J 108:719–721

    CAS  Google Scholar 

  • Green NR, Ferrando AA (1994) Plasma boron and the effects of boron supplementation in males. Environ Health Perspect 102:73–77

    CAS  Google Scholar 

  • Hall LH, Spielvogal BF, Griffin TS, Docks EL, Brotherton RJ (1989) The effects of boron hyperlipidemic agents on LDL and HDL receptor binding and related enzyme activities of rat hepatocytes, aorta cells and human fibroblasts. Res Comm Chem Pathol Pharmocol 65:297–317

    CAS  Google Scholar 

  • Hamilton EI, Minsky MJ, Cleary JJ (1972) The concentration and distribution of some stable elements in healthy human tissues from the United Kingdom. Sci Tot Env 1:341–374

    Google Scholar 

  • Hegsted M, Keenan MJ, Siver F, Wozniak P (1991) Effect of boron on vitamin D deficient rats. Biol Trace Elem Res 28:243–256

    CAS  Google Scholar 

  • Howe PD (1998) A review of boron effects in the environment. Biol Tr Elem Res 66:153–166

    CAS  Google Scholar 

  • Hunt CD (1989) Dietary boron modified the effects of magnesium and molybdenum on mineral metabolism in the cholecalciferol-deficient chick. Biol Trace Elem Res 22:201–220

    CAS  Google Scholar 

  • Hunt CD (1994) The Biochemical effects of physiologic amounts of dietary boron in animal nutrition models. Environl Health Perspect 102(7):35–42

    CAS  Google Scholar 

  • Hunt CD (1998) One possible role of dietary boron in higher animals and humans. Biol Trace Elem Res 66:205–225

    CAS  Google Scholar 

  • Hunt CD (2003) Dietary boron: an overview of the evidence for its role in immune functionJ. Trace Elem Exp Med 16:291–306

    CAS  Google Scholar 

  • Hunt CD (2012) Dietary boron: progress in establishing essential roles in human physiology. J Trace Elements in Med and Biol 26:157–160

    CAS  Google Scholar 

  • Hunt CD, Herbel JL (1991–1992) Boron affects energy metabolism in the streptozotocin-injected, vitamin D3-deprived rat. Magnesium Trace Elem 10:374–386

    Google Scholar 

  • Hunt CD, Herbel JL (1993) Physiological amounts of dietary boron improve growth and indicators of physiological status over a 20-fold range in the vitamin D3-deficient chick. In: Anke M, Meissner D, Mills C (eds) Trace element metabolism in man and animals, vol 8. Verlag Media Touristik, Gersdorf, Germany, pp 714–718

    Google Scholar 

  • Hunt CD, Nielsen F (1981) Interaction between boron and cholecalciferol in the chick. In: Gawthorne J, White C (eds) Trace element metabolism in man and animals, vol 4. Australian Academy of Science, Canberra, pp 597–600

    Google Scholar 

  • Hunt CD, Nielsen FH (1986) Dietary boron affects bone calcification in magnesium- and cholecalciferoldeficient chicks. In: Underwood EJ (ed) Trace elements in human and animal nutrition, 5th edn. Academic, New York, pp 275–277

    Google Scholar 

  • Hunt CD, Shuler T, Nielsen F (1983) Effect of boron on growth and mineral metabolism. In: Anke M, Baluman W, Braunlich H, Bruckner C (eds) 4 Spurenelement-symposium. Friedrich-­Schiller University, Jena, Germany, pp 149–155

    Google Scholar 

  • Hunt CD, Halas E, Eberhardt M (1988) Long-term effects of lactational zinc deficiency on bone mineral composition in rats fed a commercially modified Luecke diet. Biol Trace Elem Res 16:97–113

    CAS  Google Scholar 

  • Hunt CD, Shuler T, Mullen L (1991) Concentration of boron and other elements in human foods and personal-care products. J Am Diet Assoc 91:558–568

    CAS  Google Scholar 

  • Hunt CD, Herbel JL, Idso JP (1994) Dietary boron modifies the effects of vitamin D3 nutriture on indices of energy substrate utilization and mineral metabolism in the chick. J Bone Miner Res 9:171–181

    CAS  Google Scholar 

  • Ince S, Kucukkurt I, Cigerci IH, Fatih Fidan A, Eryavuz A (2010) The effects of dietary boric acid and borax supplementation on lipid peroxidation, antioxidant activity, and DNA damage in rats. J Trace Elem Med Biol Jul 24(3):161–164

    CAS  Google Scholar 

  • Indraprasit S, Alexander GV, Gonick HC (1974) Tissue composition of major and trace elements in uremia and hypertension. J Chron Dis 27:135–161

    CAS  Google Scholar 

  • Irelan N, Gubler WD, DeScenzo R (1999) Efficacy testing of Eutypa chemical and biological control candidates with DNA-based diagnostics. Winegrowing January-February:47–56

    Google Scholar 

  • Iyengar GV, Clarke WB, Downing RG (1990) Determination of boron and lithium in diverse biological matrices using neutron activation-mass spectrometry (NA-MS). Fres J Anal Chem 338:562–566

    CAS  Google Scholar 

  • Johnson S, Smith K (1976) The interaction of borate and sulfite with pyridine nucleotides. Biochemistry 15:553–559

    CAS  Google Scholar 

  • Kabu M, Civelek T (2012) Effects of propylene glycol, methionine and sodium borate on metabolic profile in dairy cattle during periparturient period. Revue Méd Vét 163(8–9):419–430

    CAS  Google Scholar 

  • Kartal SN, Yoshimura T, Imamura Y (2004) Decay and termite resistance of borontreated and chemically modified wood by in situ co-polymerisation of allyl glycidyl ether (AGE) with methyl methacrylate (MMA). Int Biodeterioration Biodegradation 53:111–117

    CAS  Google Scholar 

  • Kılıç AM, Kılıç Ö, Andaç İ, Çelik AG (2009) Boron mining in Turkey, the marketing situation and the economical importance of Boron in the World IV, International boron symposium, Eskişehir-TURKEY, 15–17 Oct

    Google Scholar 

  • Konuk M, Liman R, Cigerci IH (2007) Determination of genotoxic effect of boron on Allium Cepa root meristematic cells. Pak J Bot 39(1):73–79

    Google Scholar 

  • Korkmaz M, Yenigün M, Bakırdere S, Ataman OY, Keskin S, Müezzinoğlu T, Lekili M (2011) Effects of chronic boron exposure on semen profile. Biol Trace Elem Res 143(2):738–750

    CAS  Google Scholar 

  • Lind L, Lithell H, Wengle B, Wrege U, Ljunghall S (1988) A pilot study of metabolic effects of intravenously given alpha-calcidol in patients with chronic renal failure. Scand J Urol Nephrol 22:219–222

    CAS  Google Scholar 

  • Linden CH, Hall AH, Kulig KW, Rumack BH (1986) Acute ingestions of boric acid. Clin Toxicol 24:269–279

    CAS  Google Scholar 

  • Loomis WD, Durst RW (1992) Chemistryand biology of boron. Biofactors 3:229–239

    CAS  Google Scholar 

  • Lovatt C, Dugger W (1984) Boron. In: Frieden E (ed) Biochemistry of the essential trace elements. Plenum, New York, pp 389–421

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, San Diego, pp 379–396

    Google Scholar 

  • Massie HR, Whitney SJ, Aiello VR, Sternick SM (1990) Changes in boron concentration during development and aging of Drosophilia and effect of dietary boron on life span. Mech Aging Dev 53:1–7

    CAS  Google Scholar 

  • Meyer W, Kunin A (1969) The inductive effect of rickets on glycolytic enzymes of rat epiphyseal cartilage and its reversal by vitamin D and phosphate. Arch Biochem Biophys 129:438–446

    CAS  Google Scholar 

  • Nable RO, Cartwright B, Lance RC (1990) Genotypic differences in boron accumulation in barley: relative susceptibilities to boron deficiency and toxicity. In: El Bassam N, Dambroth M, Loughman B (eds) Genetic aspects of plant mineral nutrition. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 243–251

    Google Scholar 

  • Nable RO, Ba˜ nuelos GS, Paull JG (1997) Boron toxicity. Plant Soil 193:181–198

    CAS  Google Scholar 

  • Naghii MR (1999) The significance of dietary boron, with particular reference to athletes. Nutr Health 13:31–37

    CAS  Google Scholar 

  • Naghii MR, Samman S (1997a) The effect of boron supplementation on its urinary excretion and selected cardiovascular risk factors in healthy male subjects. Biol Tr Elem Res 56:273–286

    CAS  Google Scholar 

  • Naghii MR, Samman S (1997b) The effect of boron on plasma testosterone and plasma lipids in rats. Nutr Research 17:523–531

    CAS  Google Scholar 

  • Naghii MR, Mofid M, Asgari AR, Hedayati M, Daneshpour MS (2011) Comparative effects of daily and weekly boron supplementation on plasma steroid hormones and proinflammatory cytokines. J Trace Elem Med Biol 25(1):54–58

    CAS  Google Scholar 

  • Newnham RE (1977) Mineral imbalance and boron deficiency. In: Underwood EJ (ed) Trace elements in human and animal nutrition, 4th edn. Academic Press, Inc., New York, pp 400–402

    Google Scholar 

  • Newnham RE (1991) Agriculture practices affect arthritis. Nutr Health 7:89–100

    CAS  Google Scholar 

  • Nielsen FH (1988) Boron- an overlooked element of potential nutritional importance. Nutr Today Jan/Feb:4–7

    Google Scholar 

  • Nielsen FH (1990) Studies on the relationship between boron and magnesium which possibly affects the formation and maintenance of bones. Magnes Trace Elem 9:61–69

    CAS  Google Scholar 

  • Nielsen FH (1997) Boron in human and animal nutrition. Plant Soil 193:199–208

    CAS  Google Scholar 

  • Nielsen FH, Hunt CD, Mullen LM, Hunt JR (1987) Effect of dietary boron on mineral, estrogen, and testosterone metabolism in postmenopausal women. FASEB J 1(5):394–397

    CAS  Google Scholar 

  • Nielsen FH, Shuler TR, Zimmerman TJ, Uthus EO (1988) Magnesium and methionine deprivation affect the response of rats to boron deprivation. Biol Trace Elem Res 17:91–107

    CAS  Google Scholar 

  • Norman A, Heldt A, Grodsky G (1980) Vitamin D deficiency inhibits pancreatic secretion of insulin. Science 209:823–825

    CAS  Google Scholar 

  • Pawa S, Ali S (2006) Boron ameliorates fulminant hepatic failure by counteracting the changes associated with the oxidative stress. Chem Biol Interact 160(2):89–98

    CAS  Google Scholar 

  • Paynter OE (1963) 90-Day dietary feeding - Dogs with 20 MULE TEAM® Borax (Sodium tetraborate decahydrate). MRID 406923–07

    Google Scholar 

  • Penland JG (1998) The importance of boron nutrition for brain and psychological function. Biol Tr Elem Res 66:299–317

    CAS  Google Scholar 

  • Price CJ, Strong PL, Murray FJ, Goldberg MM (1997) Blood boron concentration in pregnant rats fed boric acid throughout gestation. Reprod Toxicol 11(6):833–842

    CAS  Google Scholar 

  • Reagan E (1985) Acute dermal toxicity study of 20 MULE TEAM sodium tetraboratedecahydrate in New Zealand white rabbits: lab project number: 8403A. Unpublished study prepared by Food & Drug Research Labs, Inc. 9 p. MRID 43553200

    Google Scholar 

  • Reagan E (1985) Primary dermal irritation study of 20 MULE TEAM sodium tetraboratedecahydrate in New Zealand white rabbits: lab project number: 8403B. Unpublished study prepared by Food & Drug Research Labs, Inc. 8 p. MRID 43553201

    Google Scholar 

  • Reagan E (1985) Primary eye irritation study of 20 MULE TEAM sodium tetraborate decahydrate in New Zealand white rabbits: lab project number: 8403B. Unpublished study prepared by Food & Drug Research Labs, Inc. 21 p. MRID 43553202

    Google Scholar 

  • Reid R (2007) Update on boron toxicity and tolerance in plants. In: Xu F, Goldbach HE, Brown PH, Bell RW, Fujiwara T, Hunt CD, Goldberg S, Shi L (eds) Advances in plant and animal boron nutrition. Springer, Dordrecht, The Netherlands, pp 83–90

    Google Scholar 

  • Reid RJ, Hayes JE, Post A, Stangoulis JCR, Graham RD (2004) A critical analysis of the causes of boron toxicity in plants. Plant Cell Environ 25:1405–1414

    Google Scholar 

  • Restuccio A, Mortensen ME, Kelley MT (1992) Fatal ingestion of boric acid in an adult. Am J Emerg Med Nov 10(6):545–547

    CAS  Google Scholar 

  • Roessner U, Patterson JH, Forbes MG, Fincher GB, Langridge P, Bacic A (2006) An investigation of boron toxicity in barley using metabolomics. Plant Physiol 142:1087–1101

    CAS  Google Scholar 

  • Rolshausen PE, Gubler WD (2005) Use of boron for the control of Eutypa Dieback of grapevines. Plant Dis 89:734–738

    CAS  Google Scholar 

  • Roush A, Norris E (1950) The inhibition of xanthine oxidase by borates. Arch Biochem Biophys 29:344–347

    CAS  Google Scholar 

  • Sabuncuoglu BT, Kocaturk PA, Yaman Ö, Kavas GO, Tekelioglu M (2006) Effects of subacute boric acid administration on rat kidney tissue. Clin Toxicol (Phila) 44(3):249–253

    CAS  Google Scholar 

  • Samman S, Naghii MR, Lyons Wall PM, Verus AP (1998) The nutritional and metabolic effects of boron in humans and animals. Biol Tr Elem Res 66:227–235

    CAS  Google Scholar 

  • Sander JE, Dufour L, Wyatt RD, Bush PB, Page RK (1991) Acute toxicity of boric acid and boron tissue residues after chronic exposure in broiler chickens. Avian Dis 35(4):745–749

    CAS  Google Scholar 

  • Schultz ME, Parmeter JR, Slaughter GW (1992) Long-term effect of treating true fir stumps with sodium tetraborate to control losses from Heterobasision annosum. West J Appl For 7:29–31

    Google Scholar 

  • Scialli AR, Bondeb JP, Irene Brüske-Hohlfeldc B, Culverd D, Li Y, Sullivanf FM (2010) An overview of male reproductive studies of boron with an emphasis on studies of highly exposed Chinese workers. Reprod Toxicol 29:10–24

    CAS  Google Scholar 

  • Simon J, Rosselin G (1978) Effect of fasting, glucose, amino acids and food intake on in vivo insulin release in the chicken. Horm Metab Res 10:93–98

    CAS  Google Scholar 

  • Smith RS (1970) Borax to control Fomes annosus infection of white fir stumps. Plant Dis Rep 54:872–875

    Google Scholar 

  • Strittmatter P (1964) Reversible direct hydrogen transfer from reduced pyridine nucleotides to cytochrome b5 reductase. J Biol Chem 239:3043–3050

    CAS  Google Scholar 

  • Sutherland B, Strong P, King JC (1998) Determining human dietary requirements for boron. Biol Tr Elem Res 66:193–204

    CAS  Google Scholar 

  • Tamay-Cach F, Correa-Basurto J, Villa-Tanaca L, Mancilla-Percino T, Juárez-Montiel M, Trujillo-­Ferrara JG (2012) Evaluation of new antimicrobial agents on Bacillus spp. strains: docking affinity and in vitro inhibition of glutamate-racemase. J Enzyme Inhib Med Chem Aug 7. [Epub ahead of print] DOI: 10.3109/14756366.2012.705837

    Google Scholar 

  • Turkez H, Geyikoğlu F, Tatar A (2012) Borax counteracts genotoxicity of aluminum in rat liver. Toxicol Ind Health Published online 4 April 2012 DOI: 10.1177/0748233712442739

    Google Scholar 

  • USDA Forest Service (2006) Human health and ecological risk assessment for borax (Sporax®) final report

    Google Scholar 

  • Vanderpool RA, Johnson PE (1992) Boron isotope ratios in commercial produce and boron-10 foliar and hydroponic enriched plants. J Agric Food Chem 40:462–466

    CAS  Google Scholar 

  • Weir RJ, Fisher RS (1972) Toxicologic studies on borax and boric acid. Toxicol Appl Pharmacol 23:351–364

    CAS  Google Scholar 

  • WHO (World Health Organization) (1998) Environmental health criteria 204: boron. International programme on chemical safety, Geneva, Switzerland. ISBN 92 4 157204 3, pp. 105–106

    Google Scholar 

  • Wilson JH, Ruszler PL (1996) Effects of dietary boron supplementation on laying hens. Br Poul Sci 37:723–729

    CAS  Google Scholar 

  • Wnorowski G (1994) Sodium tetraborate decahydrate: acute inhalation toxicity limit test (in rats). Lab project number: 3309. Unpublished study prepared by Product Safety Labs. 24p. MRID 43500800

    Google Scholar 

  • Woods WG (1994) An introduction to boron: history, sources, uses, and chemistry. Environ Health Perspect 102(Suppl 7):5–11

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Kabu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kabu, M., Akosman, M.S. (2013). Biological Effects of Boron. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 225. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6470-9_2

Download citation

Publish with us

Policies and ethics