Skip to main content

Effects of Transcranial Focal Electrical Stimulation via Concentric Ring Electrodes on Seizure Activity

  • Chapter
  • First Online:
  • 1298 Accesses

Abstract

Epilepsy affects approximately one percent of the planets population. There does not appear to be any single therapy that works for all types of epilepsy. As an alternative we have been developing a noninvasive, or minimally invasive, transcranial focal electrical stimulation (TFS) based on the novel tripolar concentric ring electrode (TCRE). By applying biphasic, charge balanced, constant current, pulses noninvasively through the TCRE we have realized acute seizure attenuation in rats. We found that the TFS significantly reduced penicillin-induced myoclonic jerks. There was also a significant improvement in survival for the TFS-treated animals compared to those without application of TFS due to the pilocarpine-induced status epilepticus (SE). Long-lasting control of SE, without antiepileptic drugs, provided positive proof that TFS had antiseizure effects. We also found that TFS via TCREs significantly reduced Pentylenetetrazole (PTZ)-induced hypersynchrony at the beta and gamma frequencies as quantified from cross channel coherence performed on the electroencephalograms (EEGs) recorded from the TCREs. Further, we developed a noninvasive automated seizure control system utilizing TFS and EEG signals from the TCREs. The automatically triggered TFS significantly reduced the power of the EEG. We have also performed safety testing, applying TFS once or multiple times. The histological analysis on scalp, cortex, and hippocampal areas suggests there is no significant difference between the controls and the TFS-treated samples. In conclusion we have found TFS to be effective at attenuating acute seizures from three different rat models and safe. In the future we need to test if TFS is effective in models of pharmacoresistant epilepsy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ben-Haim S, Asaad WF, Gale JT, Eskandar EN. Risk factors for hemorrhage during microelectrode-­guided deep brain stimulation and the introduction of an improved microelectrode design. Neurosurgery. 2009;64:754–62.

    Article  PubMed  Google Scholar 

  • Ben-Menachem E, Manon-Espaillat R, Ristanovic R, Wilder BJ, Stefan H, Mirza W, et al. Vagus nerve stimulation therapy for treatment of partial seizures, 1: a controlled study of effect on seizures. Epilepsia. 1994;35:616–26.

    Article  PubMed  CAS  Google Scholar 

  • Besio WG, Chen T. Tripolar Laplacian electrocardiogram and moment of activation isochronal mapping. Physiol Meas. 2007;28:515–29.

    Google Scholar 

  • Besio WG, Fasiuddin M. Quantizing the depth of bioelectrical sources for non-invasive 3D imaging. J Bioelectromagn. 2005;7:90–3.

    Google Scholar 

  • Besio WG, Koka K, Aakula R, Dai W. Tri-polar concentric electrode development for high resolution EEG Laplacian electroencephalography using tri-polar concentric ring electrodes. IEEE Trans Biomed Eng. 2006;53:926–33.

    Google Scholar 

  • Besio WG, Koka K, Cole A. Feasibility of non-invasive transcutaneous electrical stimulation for modulating pilocarpine-induced status epilepticus seizures in rats. Epilepsia. 2007;48:2273–9.

    Google Scholar 

  • Besio WG, Cao H, Zhou P. Application of tripolar concentric electrodes and pre-feature selection algorithm for brain–computer interface. IEEE Trans Neural Syst Rehabil Eng. 2008;16:191–4.

    Google Scholar 

  • Besio WG, Koka K, Gale KS, Medvedev AV. Preliminary data on anticonvulsant efficacy of transcutaneous electrical stimulation via novel concentric ring electrodes. In: Schachter SC, Guttag JV, Schiff SJ, Schomer DL, Summit Contributors. Advances in the application of technology to epilepsy: the CIMIT/NIO Epilepsy Innovation Summit, Boston, May 2008. Epilepsy Behav. 2009;16:3–46.

    Google Scholar 

  • Besio WG, Gale KS, Medvedev A. Possible therapeutic effects of transcutaneous electrical stimulation via concentric ring electrodes. Epilepsia. 2010a;51:85–7.

    Google Scholar 

  • Besio WG, Sharma V, Spaulding J. The effects of concentric ring electrode electrical stimulation on rat skin. Ann Biomed Eng. 2010b;38:1111–8.

    Google Scholar 

  • Besio WG, Liu X, Wang L, Medvedev A, Koka K. Transcutaneous focal electrical stimulation via concentric ring electrodes reduces synchrony induced by pentylenetetrazole in beta and gamma bands in rats. IJ Neural Syst Spec Iss Neuromodulat Epilepsy. 2011a;21:1–11.

    Google Scholar 

  • Besio WG, Liu X, Liu Y, Sun YL, Medvedev AV, Koka K. Algorithm for automatic detection of pentylenetetrazole-induced deizures in rats. Proceedings of 33rd annual international conference of the IEEE EMBS, Boston, USA, 30 August to 3 September; 2011b. p. 8283–6.

    Google Scholar 

  • Bhatia R, Dalton A, Richards M, Hopkins C, Aziz T, Nandi D. The incidence of deep brain stimulator hardware infection: the effect of change in antibiotic prophylaxis regimen and review of the literature. Br J Neurosurg. 2011;25:625–31.

    Article  PubMed  Google Scholar 

  • Chabardes S, Kahane P, Minotti L, Koudsie A, Hirsch E, Benabid AL. Deep brain stimulation in epilepsy with particular reference to the subthalamic nucleus. Epileptic Disord. 2002;4:83–93.

    Google Scholar 

  • Chanpattana W, Sackeim HA. Electroconvulsive therapy in treatment-resistant schizophrenia: prediction of response and the nature of symptomatic improvement. J ECT. 2010;26:289–98.

    Article  PubMed  Google Scholar 

  • Corda MG, Orlandi M, Lecca D, Carboni G, Frau V, Giorgi O. Pentylenetetrazol-induced kindling in rats: effect of GABA function inhibitors. Pharmacol Biochem Behav. 1991;40:329–33.

    Google Scholar 

  • Cyberonics Inc. 2012. Press release obtained from http://www.cyberonics.com/en/press-room/Overview-to-Cyberonics.pdf. Accessed 13 Sept 2012.

  • Davis R. Cerebellar stimulation for cerebral palsy spasticity, function, and seizures. Arch Med Res. 2000;31:290–9.

    Article  PubMed  CAS  Google Scholar 

  • DeGiorgio CM, Shewmon DA, Whitehurst T. Trigeminal nerve stimulation for epilepsy. Neurology. 2003;12:421–2.

    Article  Google Scholar 

  • Drislane FW, Blum AS, Lopez MR, Gautam S, Schomer DL. Duration of refractory status epilepticus and outcome: loss of prognostic utility after several hours. Epilepsia. 2009;50:1566–71.

    Article  PubMed  Google Scholar 

  • Fisher R. Anterior thalamic nucleus stimulation: issues in study design. In: Luders H, editor. Deep brain stimulation and epilepsy. London: Martin Dunitz; 2003. p. 307–22.

    Google Scholar 

  • Fregni F, Otachi P, do Valle A, Boggio P, Thut G, Rigonatti S, et al. A randomized clinical trial of repetitive transcranial magnetic stimulation in patients with refractory epilepsy. Ann Neurol. 2006a;60:447–55.

    Article  PubMed  Google Scholar 

  • Fregni F, Thome-Souza S, Nitsche MA, Freedman SD, Valente KD, Pascual-Leone A. A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy. Epilepsia. 2006b;47:335–42.

    Article  PubMed  Google Scholar 

  • George MS. Stimulating the brain. Sci Am. 2003;289:66–73.

    Article  PubMed  Google Scholar 

  • George MS, Sackeim HA, Rush AJ, Marangell LB, Nahas Z, Husain MM, et al. Vagus nerve stimulation: a new tool for brain research and therapy. Biol Psychiatry. 2000;47:287–95.

    Article  PubMed  CAS  Google Scholar 

  • Gigante PR, Goodman RR. Alternative surgical approaches in epilepsy. Curr Neurol Neurosci Rep. 2011;11:404–8.

    Article  PubMed  Google Scholar 

  • Goodman J, Berger R, Theng T. Preemptive low-frequency stimulation decreases the incidence of amygdale-kindled seizures. Epilepsia. 2005;46:1–7.

    Article  PubMed  Google Scholar 

  • Griesemer DA, Kellner CH, Beale MD, Smith GM. Electroconvulsive therapy for treatment of intractable seizures. Initial findings in two children. Neurology. 1997;49:1389–92.

    Article  PubMed  CAS  Google Scholar 

  • Hallett M. Transcranial magnetic stimulation: a revolution in clinical neurophysiology. J Clin Neurophysiol. 2002;19:253–4.

    Article  PubMed  Google Scholar 

  • Han D, Yamada K, Senzaki K, Xiong H, Nawa H, Nabeshima T. Involvement of nitric oxide in pentylenetetrazole-induced kindling in rats. J Neurochem. 2000;74:792–8.

    Article  PubMed  CAS  Google Scholar 

  • Handforth A, DeGiorgio C, Schachter S, Uthman B, Naritoku D, Tecoma E, et al. Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology. 1995;51:48–55.

    Article  Google Scholar 

  • Ito T, Hori M, Yoshida K, Shimizu M. Effect of anticonvulsants on seizures developing in the course of daily administration of pentetrazol to rats. Eur J Pharmacol. 1977;45:165–72.

    Article  Google Scholar 

  • Kerrigan J, Litt B, Fisher R, Cranstoun S, Frence J, Blum D, et al. Electrical stimulation of the anterior nucleus of the thalamus for the treatment of intractable epilepsy. Epilepsia. 2004;45:346–54.

    Article  PubMed  Google Scholar 

  • Koka K, Besio WG. Improvement of spatial selectivity and decrease of mutual information of tri-­polar concentric ring electrodes. J Neurosci Methods. 2007;165:216–22.

    Google Scholar 

  • Kossoff E, Ritzl E, Politsky J, Murro A, Smith J, Duckrow R, et al. Effect of an external responsive neurostimulator on seizures and electrographic discharges during subdural electrode monitoring. Epilepsia. 2004;45:1560–7.

    Article  PubMed  Google Scholar 

  • Krumholz A, Sung GY, Fisher RS, Barry E, Bergey GK, Grattan LM. Complex partial status epilepticus accompanied by serious morbidity and mortality. Neurology. 1995;45:1499–504.

    Article  PubMed  CAS  Google Scholar 

  • Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342:314–9.

    Article  PubMed  CAS  Google Scholar 

  • Makeyev O, Liu X, Koka K, Kay SM, Besio WG. Transcranial focal stimulation via concentric ring electrodes reduced power of pentylenetetrazole-induced seizure activity in rat electroencephalogram. 33rd Annual international IEEE EMBS conference, Boston, USA, 30 August to 3 September; 1991. p. 7560–3.

    Google Scholar 

  • Makeyev O, Liu X, Luna-Munguia H, Rogel-Salazar G, Mucio-Ramirez S, Liu Y, et al. Toward a noninvasive automatic seizure control system in rats with transcranial focal stimulations via tripolar concentric ring electrodes. IEEE TNSRE. 2012a;20:422–31.

    Google Scholar 

  • Makeyev O, Luna-Munguía H, Rogel-Salazar G, Liu X, Besio WG. Noninvasive transcranial focal stimulation via tripolar concentric ring electrodes lessens behavioral seizure activity of recurrent pentylenetetrazole administrations in rats. IEEE TNSRE. 2012b. doi:10.1109/TNSRE.2012.2198244.

  • Merton PA, Morton HB. Stimulation of the cereberal cortex in the intact human subject. Nature. 1980;285:227.

    Article  PubMed  CAS  Google Scholar 

  • Mirski M, Rossell L, Terry J, Fisher R. Anticonvulsant effect of anterior thalamic high frequency electrical stimulation in the rat. Epilepsy Res. 1997;28:89–100.

    Article  PubMed  CAS  Google Scholar 

  • Mucio-Ramirez S, Makeyev O, Liu X, Leon-Olea M, Besio WG. Cortical integrity after transcutaneous focal electrical stimulation via concentric ring electrodes. Society for neuroscience 41st annual meeting, abs. 672.20/Y19, Washington, DC, 12–16 November; 2011.

    Google Scholar 

  • Pouratian N, Reames DL, Frysinger R, Elias WJ. Comprehensive analysis of risk factors for seizures after deep brain stimulation surgery. J Neurosurg. 2011;115(2):310–5.

    Article  Google Scholar 

  • Sackeim HA. Convulsant and anticonvulsant properties of electroconvulsive therapy: towards a focal form of brain stimulation. Clin Neurosci Res. 2004;4:39–57.

    Article  Google Scholar 

  • Shorvon SD, Trinka E, Walker MC. The proceedings of the first London colloquium on status epilepticus. Epilepsia. 2007;48:1–3.

    Article  Google Scholar 

  • Sirven J, Waterhouse E. Management of status epilepticus. Am Fam Physician. 2003;68:469–76.

    PubMed  Google Scholar 

  • Szyndler J, Rok P, Maciejak P, Walkowiak J, Czlonkowska A. Effects of pentylenetetrazol-induced kindling of seizures on rat emotional behavior and brain monoaminergic systems. Pharmacol Biochem Behav. 2002;73:851–61.

    Google Scholar 

  • Tassinari CA, Cincotta M, Zaccara G, Michelucci R. Transcranial magnetic stimulation and epilepsy. Clin Neurophysiol. 2003;114:777–98.

    Article  PubMed  Google Scholar 

  • The Vagus Nerve Stimulation Study Group. A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. Neurology. 1995;45:224–30.

    Article  Google Scholar 

  • Theodore W, Fisher R. Brain stimulation for epilepsy. Lancet. 2004;3:111–8.

    Article  Google Scholar 

  • Theodore WH, Hunter K, Chen R, Vega-Bermudez F, Boroojerdi B, Reeves-Tyer P, et al. Transcranial magnetic stimulation for the treatment of seizures. A controlled study. Neurology. 2002;59:560–2.

    Google Scholar 

  • Thomas RK, Young CD. A note on the early history of electrical stimulation of the human brain. J Gen Psychol. 1993;120:73–81.

    Article  PubMed  CAS  Google Scholar 

  • Usui N, Maesawa S, Kajita Y, Endo O, Takebayashi S, Yoshida J. Suppression of secondary generalization of limbic seizures by stimulation of subthalamic nucleus in rats. J Neurosurg. 2005;102:1122–9.

    Article  PubMed  Google Scholar 

  • Van Oosterom A, Strackee J. Computing the lead field of electrodes with axial symmetry. Med Biol Eng Comput. 1983;21:473–81.

    Google Scholar 

  • Velasco AL, Velasco M, Velasco F, Menes D, Gordon F, Rocha L, et al. Subacute and chronic electrical stimulation of hippocampus on intractable temporal lobe seizures: preliminary report. Arch Med Res. 2000;31:16–328.

    Google Scholar 

  • Vonck K, Boon P, Achten E, De Reuck J, Caemaert J. Long-term amygdalohippocampal stimulation for refractory temporal lobe epilepsy. Ann Neurol. 2002;52:556–65.

    Article  PubMed  Google Scholar 

  • Wassermann E. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation. Electroencephalogr Clin Neurophysiol. 1998;108:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Wiley JD, Webster JG. Analysis and control of the current distribution under circular dispersive electrodes. IEEE Trans Biomed Eng. 1982a;29:381–5.

    Google Scholar 

  • Wiley JD, Webster JG. Distributed equivalent-circuit model for circular dispersive electrodes. IEEE Trans Biomed Eng. 1982b;29:385–9.

    Google Scholar 

  • Zangen A, Roth Y, Voller B, Hallett M. Transcranial magnetic stimulation of deep brain regions: evidence for efficacy of the H-Coil. Clin Neurophysiol. 2005;116:775–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter G. Besio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Besio, W.G. (2013). Effects of Transcranial Focal Electrical Stimulation via Concentric Ring Electrodes on Seizure Activity. In: Rocha, L., Cavalheiro, E. (eds) Pharmacoresistance in Epilepsy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6464-8_19

Download citation

Publish with us

Policies and ethics