Skip to main content

Contribution of the Antiepileptic Drug Administration Regime in the Development and/or Establishment of Pharmacoresistant Epilepsy

  • Chapter
  • First Online:
Book cover Pharmacoresistance in Epilepsy

Abstract

Overexpression of membrane transporters is one of the main pharmacokinetic reasons that lead to the lack of response of antiepileptics in drug refractory treatments. The present chapter deals with the difficulty anticonvulsant agents have in reaching the brain receptor sites.

An inducer and substrate of efflux transporter drug, when it is continuously administered so as to maintain constant levels in body fluids could become noneffective throughout time, even it was especially effective for a certain type of epilepsy.

In spite of the fact phenytoin (PHT) is a well-known effective antiepileptic drug with characteristic nonlinear pharmacokinetics; resistance could be developed in epileptic patients during chronic treatments. Some new approaches that challenge conventional assumptions about its peculiar pharmacokinetics were consistent with the mechanism involved in refractory epilepsy.

Salivary drug monitoring was a useful tool for understanding the mechanism of both pharmacokinetics and pharmacoresistance developed by PHT as inducer and substrate of efflux transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ariens EJ. Modulation of pharmacokinetics by molecular manipulation. In: Ariens EJ, editor. Drug design, vol. 2. New York: Academic; 1971.

    Google Scholar 

  • Bodor N. Soft drugs: principles and methods for the design of safe drugs. Med Res Rev. 1984;4:449–69.

    Article  PubMed  CAS  Google Scholar 

  • Brouwers PJ, de Boer LE, Guchelaar HJ. Ciprofloxacin–phenytoin interaction. Ann Pharmacother. 1997;31:498.

    PubMed  CAS  Google Scholar 

  • Dutta S, Zhang Y, Selness DS, Lee LL, Williams LA, Sommerville KW. Comparison of the bioavailability of unequal doses of divalproex sodium extended-release formulation relative to the delayed-release formulation in healthy volunteers. Epilepsy Res. 2002;49:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Eichler HG, Müller M. Drug distribution: the forgotten relative in clinical pharmacokinetics. Clin Pharmacokinet. 1998;34:95–9.

    Article  PubMed  CAS  Google Scholar 

  • Fagiolino P. Salivary drug monitoring: biopharmaceutic, pharmacokinetic and therapeutic applications [in spanish]. Montevideo, Uruguay: Comisión Sectorial de Investigación Científica. Universidad de la República; 1999.

    Google Scholar 

  • Fagiolino P. The influence of cardiac output distribution on the tissue/plasma drug concentration ratio. Eur J Drug Metab Pharmacokinet. 2002;27:79–81.

    Article  PubMed  CAS  Google Scholar 

  • Fagiolino P. Multiplicative dependence of the first order rate constant and its impact on clinical pharmacokinetics and bioequivalence. Eur J Drug Metab Pharmacokinet. 2004;29:43–9.

    Article  PubMed  CAS  Google Scholar 

  • Fagiolino P, Duré C, Vázquez M. Sympathetic tone evaluation in patients treated with phenytoin and carbamazepine [in Spanish]. Acta Farm Bonaerense. 2000;19:119–24.

    Google Scholar 

  • Fagiolino P, Wilson F, Samaniego E, Vázquez M. In vitro approach to study the influence of the cardiac output distribution on drug concentration. Eur J Drug Metab Pharmacokinet. 2003;28:147–53.

    Article  PubMed  CAS  Google Scholar 

  • Fagiolino P, Eiraldi R, Vázquez M. The influence of cardiovascular physiology on dose-­pharmacokinetic and pharmacokinetic-pharmacodynamic relationships. Clin Pharmacokinet. 2006a;45:433–48.

    Article  PubMed  CAS  Google Scholar 

  • Fagiolino P, Vázquez M, Olano I, Delfino A. Systemic and presystemic conversion of carbamazepine to carbamazepine-10,11-epoxide during long term treatment. J Epilepsy Clin Neurophysiol. 2006b;12:13–6.

    Article  Google Scholar 

  • Fagiolino P, Martín O, González N, Malanga A. Actual bioavailability of divalproex sodium extended-release tablets and its clinical implications. J Epilepsy Clin Neurophysiol. 2007;13:75–8.

    Article  Google Scholar 

  • Fagiolino P, Vázquez M, Eiraldi R, Maldonado C, Scaramelli A. Efflux transporter influence on drug metabolism: theoretical approach for bioavailability and clearance prediction. Clin Pharmacokinet. 2011;50:75–80.

    Article  PubMed  Google Scholar 

  • Galeazzi RL, Benet LZ, Sheiner LB. Relationship between the pharmacokinetics and ­pharmacodynamics of procainamide. Clin Pharmacol Ther. 1976;20:278–89.

    PubMed  CAS  Google Scholar 

  • Gerk PM, Vore M. Regulation of the multidrug resistance-associated protein 2 (MRP2) and its role in drug disposition. J Pharmacol Exp Ther. 2002;302:407–15.

    Article  PubMed  CAS  Google Scholar 

  • Giessmann T, May K, Modess C, Wegner D, Hecker U, Zschiesche M, et al. Carbamazepine regulates intestinal P-glycoprotein and multidrug resistance protein MRP2 and influences disposition of talinolol in humans. Clin Pharmacol Ther. 2004;76:192–200.

    Article  PubMed  CAS  Google Scholar 

  • Glick TH, Workman TP, Gaufberg SV. Preventing phenytoin intoxication: safer use of a familiar anticonvulsant. J Fam Pract. 2004;53:197–202.

    PubMed  Google Scholar 

  • Gourlay SG, Benowitz NL. Arteriovenous differences in plasma concentration of nicotine and catecholamines and related cardiovascular effects after smoking, nicotine nasal spray, and intravenous nicotine. Clin Pharmacol Ther. 1997;62:453–63.

    Article  PubMed  CAS  Google Scholar 

  • Handley AJ. Phenytoin tolerance tests. Br Med J. 1970;3:203–4.

    Article  PubMed  CAS  Google Scholar 

  • Harmsen S, Meijerman I, Febus CL, Maas-Bakker RF, Beijnen JH, Schellens JH. PXR-mediated induction of P-glycoprotein by anticancer drugs in a human colon adenocarcinoma-derived cell line. Cancer Chemother Pharmacol. 2009;66:765–71.

    Article  PubMed  Google Scholar 

  • Hoffmann K, Löscher W. Upregulation of brain expression of P-glycoprotein in MRP2-deficient TR rats resembles seizure-induced up-regulation of this drug efflux transporter in normal rats. Epilepsia. 2007;48:631–45.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann K, Gastens AM, Volk HA, Löscher W. Expression o the multidrug transporter MRP2 in the blood-brain barrier after pilocarpine-induced seizures in rats. Epilepsy Res. 2006;69:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Howard CE, Roberts RS, Ely DS, Moye RA. Use of multiple-dose activated charcoal in phenytoin toxicity. Ann Pharmacother. 1994;28:201–3.

    PubMed  CAS  Google Scholar 

  • Ibarra M, Vázquez M, Fagiolino P, Mutilva F, Canale A. Total, unbound plasma and salivary phenytoin levels in critically ill patients. J Epilepsy Clin Neurophysiol. 2010;16:69–73.

    Article  Google Scholar 

  • Jung D, Powell JR, Walson P, Perrier D. Effect of dose on phenytoin absorption. Clin Pharmacol Ther. 1980;28:479–85.

    Article  PubMed  CAS  Google Scholar 

  • Kerb R, Aynacioglu AS, Brockmöller J, Schlagenhaufer R, Bauer S, Szekeres T, et al. The predictive value of MDR1, CYP2C9 and CYP2C19 polymorphisms for phenytoin plasma levels. Pharmacogenomics J. 2001;1:204–10.

    Article  PubMed  CAS  Google Scholar 

  • Klotz U. The role of pharmacogenetics in the metabolism of antiepileptic drugs: pharmacokinetic and therapeutic implications. Clin Pharmacokinet. 2007;46:271–9.

    Article  Google Scholar 

  • Lam G, Chiou WL. Determination of the steady-state volume of distribution using arterial and venous plasma data from constant infusion studies with procainamide. J Pharm Pharmacol. 1982;34:132–4.

    Article  PubMed  CAS  Google Scholar 

  • Läpple F, von Richter O, Fromm MF, Richter T, Thon KP, Wisser H, et al. Differential expression and function of CYP2C isoforms in human intestine and liver. Pharmacogenetics. 2003;13:565–75.

    Article  PubMed  Google Scholar 

  • Lazarowski A, Czornyj L, Lubieniecki F, Vázquez S, D’Giano C, Sevlever G, et al. Multidrug-­resistance (MDR) proteins develops refractory epilepsy phenotype: clinical and experimental evidences. Curr Drug Ther. 2006;1:291–309.

    Article  CAS  Google Scholar 

  • Lazarowski A, Czornyj L, Lubieniecki F, Girardi E, Vázquez S, D’Giano C. ABC transporters during epilepsy and mechanisms underlying multidrug resistance in refractory epilepsy. Epilepsia. 2007;48:140–9.

    Article  PubMed  CAS  Google Scholar 

  • Levy G. Predicting effective drug concentrations for individual patients: determinants of pharmacodynamics variability. Clin Pharmacokinet. 1998;34:323–33.

    Article  PubMed  CAS  Google Scholar 

  • Lin JH. Dose-dependent pharmacokinetics: experimental observations and theoretical considerations. Biopharm Drug Dispos. 1994;15:1–31.

    Article  PubMed  CAS  Google Scholar 

  • Lolin YI, Ratnaraj N, Hjelm M, Patsalos PN. Antiepileptic drug pharmacokinetics ad neuropharmacokinetics in individual rats by repetitive withdrawal of blood and cerebrospinal fluid: phenytoin. Epilepsy Res. 1994;19:99–110.

    Article  PubMed  CAS  Google Scholar 

  • Löscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci. 2005;6:591–602.

    Article  PubMed  Google Scholar 

  • Maldonado C. Understanding the role of membrane transporters in the therapeutics of epilepsy [in Spanish] [Dissertation]. Uruguay: Faculty of Chemistry, University of the Republic; 2011

    Google Scholar 

  • Maldonado C, Fagiolino P, Vázquez M, Eiraldi R, Alvariza S, Bentancur C, et al. Time-dependent and concentration-dependent upregulation of carbamazepine efflux transporter. A preliminary assessment from salivary drug monitoring. Lat Am J Pharm. 2011;30:908–12.

    CAS  Google Scholar 

  • Mauro LS, Mauro VF, Brown DL, Somani P. Enhancement of phenytoin elimination by multiple-­dose activated charcoal. Ann Emerg Med. 1987;16:1132–5.

    Article  PubMed  CAS  Google Scholar 

  • Meibohm B, Derendorf H. Basic concepts of pharmacokinetic/pharmacodynamic (PK/PD) modelling. Int J Clin Pharmacol Ther. 1997;35:401–13.

    PubMed  CAS  Google Scholar 

  • Perloff MD, Von Moltke LL, Marchand JE, Greenblatt DJ. Ritonavir induces P-glycoprotein expression, multidrug resistance-associated protein (MRP1) expression, and drug transporter-­mediated activity in a human intestinal cell line. J Pharm Sci. 2001;90:1829–37.

    Article  PubMed  CAS  Google Scholar 

  • Pollack PT, Slayter KL. Hazards of doubling phenytoin dose in the face of an unrecognized interaction with ciprofloxacin. Ann Pharmacother. 1997;31:61–4.

    Google Scholar 

  • Posti J. Saliva-plasma drug concentration ratios during absorption: theoretical considerations and pharmacokinetic implications. Pharm Acta Helv. 1982;57:83–92.

    PubMed  CAS  Google Scholar 

  • Potschka H, Fedrowitz M, Löscher W. Multidrug resistance protein MRP2 contributes to blood-­brain barrier function and restricts antiepileptic drug activity. J Pharmacol Exp Ther. 2003;306:124–31.

    Article  PubMed  CAS  Google Scholar 

  • Ratanakorn D, Kaojarern S, Phuapradit P, Mokkhavesa C. Single oral loading dose of phenytoin: a pharmacokinetics study. J Neurol Sci. 1997;147:89–92.

    Article  PubMed  CAS  Google Scholar 

  • Remy S, Beck H. Molecular and cellular mechanism of pharmacoresistance in epilepsy. Brain. 2006;129:18–35.

    Article  PubMed  Google Scholar 

  • Ritschel WA, Thompson GA. Monitoring of drug concentration in saliva: a non-invasive pharmacokinetic procedure. Methods Find Exp Clin Pharmacol. 1983;5:511–25.

    PubMed  CAS  Google Scholar 

  • Rojanasthien N, Chaichana N, Teekachunhatean S, Kumsorn B, Sangdee C, Chankrachang S. Effect of doses on the bioavailability of phenytoin from a prompt-release and an extended-­release preparation: single dose study. J Med Assoc Thai. 2007;90:1883–93.

    PubMed  Google Scholar 

  • Ruiz ME, Fagiolino P, Buschiazzo PM, Volonté MG. Is saliva suitable as a biological fluid in relative bioavailability studies? Analysis of its performance in a 4×2 replicate crossover design. Eur J Drug Metab Pharmacokinet. 2011;36:229–36.

    Article  PubMed  CAS  Google Scholar 

  • Stargel WW, Shand DG. Propranolol: therapeutic use and serum concentration monitoring. In: Taylor WJ, Finn AL, editors. Individualizing drug therapy. Practical applications of drug monitoring, vol. 3. New York: Gross Townsend Frank Inc.; 1981.

    Google Scholar 

  • Suzuki T, Zhao YL, Nadai M, Naruhashi K, Shimizu A, Takagi K, et al. Gender-related differences in expression and function of hepatic P-glycoprotein and multidrug resistance-associated protein (Mrp2) in rats. Life Sci. 2006;79:455–61.

    Article  PubMed  CAS  Google Scholar 

  • Uematsu T, Yamaoka M, Matsuura T, Doto R, Hotomi H, Yamada A, et al. P-glycoprotein expression in human major and minor salivary glands. Arch Oral Biol. 2001;46:521–7.

    Article  PubMed  CAS  Google Scholar 

  • Uematsu T, Yamaoka M, Doto R, Tanaka H, Matsuura T, Furusawa K. Expression of ATP-binding cassette transporter in human salivary ducts. Arch Oral Biol. 2003;48:87–90.

    Article  PubMed  CAS  Google Scholar 

  • Vázquez M, Fagiolino P, Boronat A, Buroni M, Maldonado C. Therapeutic drug monitoring of vancomycin in severe sepsis and septic shock. Int J Clin Pharmacol Ther. 2008;46:140–5.

    PubMed  Google Scholar 

  • Vázquez M, Fagiolino P, Maldonado C, Ibarra M, Boronat A. Impact of severe sepsis or septic shock on drug response. In: Fernández R, editor. Severe sepsis and septic shock. Understanding a serious killer. Rijeka, Croatia: Intech Open Access; 2012.

    Google Scholar 

  • Wen T, Liu YC, Yang HW, Liu HY, Liu XD, Wang GJ, et al. Effect of 21-day exposure of phenobarbital, carbamazepine and phenytoin on P-glycoprotein expression and activity in the rat brain. J Neurol Sci. 2008;270:99–106.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Fagiolino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fagiolino, P. et al. (2013). Contribution of the Antiepileptic Drug Administration Regime in the Development and/or Establishment of Pharmacoresistant Epilepsy. In: Rocha, L., Cavalheiro, E. (eds) Pharmacoresistance in Epilepsy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6464-8_11

Download citation

Publish with us

Policies and ethics