Skip to main content

High-Temperature Oxygen Separation Using Dense Ceramic Membranes

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Climate Change Mitigation and Adaptation
  • 54 Accesses

Abstract

Mixed ionic-electronic conducting (MIEC) ceramic membrane has rapidly become an attractive alternative technology to conventional pressure swing adsorption and cryogenic distillation for oxygen separation from air. Given the heat integration opportunity in most energy generation processes, this technology offers lower cost and energy penalty given its capability to produce pure oxygen at high temperature (>800 °C). The integration of dense MIEC membranes in oxyfuel combustion to supply an oxygen-rich feed stream in turn facilitates the production of concentrated carbon dioxide gas downstream, which can be easily captured and handled to mitigate the greenhouse gas effect. This chapter overviews and discusses all essential aspects to understand oxygen-selective MIEC ceramic membrane technology. The basics behind the formation of defects responsible for high-temperature ionic transport are explained together with the transport theory. Two major family structures, e.g., fluorite and perovskite, which become the building blocks of most MIEC materials are discussed. Specific structure and properties as well as the advantages and the drawbacks of each family are explained. Some important structural considerations, e.g., crystal structure packing and Goldschmidt tolerance factor, are elaborated due to their strong relationship with the properties. Two additional concepts, e.g., dual-phase membrane and external short circuit, are given to address the drawbacks associated with fluorite and perovskite MIEC materials. Various geometries and types of MIEC membranes can be prepared, e.g., disk, tube, hollow fiber with single or multiple channels, or flat plate, each of which fits particular application. MIEC membranes can be coupled with other applications to facilitate specific reactions to synthesize value-added products. Several oxygen permeation models and their applicability to different membranes are briefly highlighted. Finally, an overview on the future prospects of oxygen-permeable MIEC membranes is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aldebert P, Traverse J-P (1985) Structure and ionic mobility of zirconia at high temperature. J Am Ceram Soc 68(1):34–40

    Article  Google Scholar 

  • An R, Song J, Li Y, Tan X, Sunarso J, Zhang C, Wang S, Liu S (2017) Bundling strategy to simultaneously improve the mechanical strength and oxygen permeation flux of the individual perovskite hollow fiber membranes. J Membr Sci 527:137–142

    Article  Google Scholar 

  • Araki S, Yamamoto H, Hoshi Y, Lu J, Hakuta Y, Hayashi H, Ohashi T, Sato K, Nishioka M, Inoue T, Hikazudani S, Hamakawa S (2012) Synthesis of Ca0.8Sr0.2Ti0.7Fe0.3O3−δ thin film membranes and its application to the partial oxidation of methane. Solid State Ionics 221:43–49

    Article  Google Scholar 

  • Arnold M, Xu Q, Tichelaar FD, Feldhoff A (2009) Local charge disproportion in a high-performance perovskite. Chem Mater 21(4):635–640

    Article  Google Scholar 

  • Asadi AA, Behrouzifar A, Mohammadi T, Pak A (2012) Effects of nano powder synthesis methods, shaping and sintering conditions on microstructure and oxygen permeation of La0.6Sr0.4Co0.2Fe0.8O3-d (LSCF) perovskite-type membranes. High Temp Mater Processes (London) 31(1):47–59

    Google Scholar 

  • Balachandran U, Dusek JT, Mieville RL, Poeppel RB, Kleefisch MS, Pei S, Kobylinski TP, Udovich CA, Bose AC (1995) Dense ceramic membranes for partial oxidation of methane to syngas. Appl Catal A 133(1):19–29

    Article  Google Scholar 

  • Balachandran U, Dusek JT, Maiya PS, Ma B, Mieville RL, Kleefisch MS, Udovich CA (1997) Ceramic membrane reactor for converting methane to syngas. Catal Today 36(3):265–272

    Article  Google Scholar 

  • Bhalla A, Guo R, Roy R (2000) The perovskite structure – a review of its role in ceramic science and technology. Mater Res Innov 4:3–26

    Article  Google Scholar 

  • Bouwmeester HJM, Kruidhof H, Burggraaf AJ (1994) Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed-conducting oxides. Solid State Ionics 72:185–194

    Article  Google Scholar 

  • Cai L, Li W, Cao Z, Zhu X, Yang W (2016) Improving oxygen permeation of MIEC membrane reactor by enhancing the electronic conductivity under intermediate-low oxygen partial pressures. J Membr Sci 520:607–615

    Article  Google Scholar 

  • Chen CS, Burggraaf AJ (1999) Stabilized bismuth oxide–noble metal mixed conducting composites as high temperature oxygen separation membranes. J Appl Electrochem 29(3):355–360

    Article  Google Scholar 

  • Chen W, Chen C-s, Winnubst L (2011) Ta-doped SrCo0.8Fe0.2O3-δ membranes: phase stability and oxygen permeation in CO2 atmosphere. Solid State Ionics 196(1):30–33

    Article  Google Scholar 

  • Chi Y, Li T, Wang B, Wu Z, Li K (2017) Morphology, performance and stability of multi-bore capillary La0.6Sr0.4Co0.2Fe0.8O3-δ oxygen transport membranes. J Membr Sci 529:224–233

    Article  Google Scholar 

  • Dou S, Masson CR (1985) Mechanism of oxygen permeation through lime-stabilized zirconia. J Electrochem Soc 132(8):1843–1849

    Article  Google Scholar 

  • Dyer PN, Richards RE, Russek SL, Taylor DM (2000) Ion transport membrane technology for oxygen separation and syngas production. Solid State Ionics 134(1):21–33

    Article  Google Scholar 

  • Eguchi K, Setoguchi T, Inoue T, Arai H (1992) Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ionics 52(1):165–172

    Article  Google Scholar 

  • Feldhoff A, Martynczuk J, Arnold M, Myndyk M, Bergmann I, Šepelák V, Gruner W, Vogt U, Hähnel A, Woltersdorf J (2009) Spin-state transition of iron in (Ba0.5Sr0.5)(Fe0.8Zn0.2)O3-δ perovskite. J Solid State Chem 182(11):2961–2971

    Article  Google Scholar 

  • Foster T (2008) Air products: air separation technology – ion transport membrane (ITM). Air Products and Chemicals, Inc., Allentown

    Google Scholar 

  • Future Market Insights (2019) Industrial oxygen market is expected to grow at a CAGR of ~6% during the forecast period of 2019 to 2029. https://www.prnewswire.com/news-releases/industrial-oxygen-market-is-expected-to-grow-at-a-cagr-of-6-during-the-forecast-period-of-2019-to-2029%2D%2Dfuture-market-insights-300887288.html. Accessed 25 Aug 2020

  • Habib MA, Nemitallah M, Ben-Mansour R (2013) Recent development in oxy-combustion technology and its applications to gas turbine combustors and ITM reactors. Energy Fuel 27(1):2–19

    Article  Google Scholar 

  • Hu Y, An R, Chu Y, Tan X, Sunarso J, Wang S, Liu S (2018) Perovskite hollow fiber membranes supported in a porous and catalytically active perovskite matrix for air separation. Sep Purif Technol 192:435–440

    Article  Google Scholar 

  • Imashuku S, Wang L, Mezghani K, Habib MA, Shao-Horn Y (2013) Oxygen permeation from oxygen ion-conducting membranes coated with porous metals or mixed ionic and electronic conducting oxides. J Electrochem Soc 160(11):E148–E153

    Article  Google Scholar 

  • Inaba H, Tagawa H (1996) Ceria-based solid electrolytes. Solid State Ionics 83(1):1–16

    Article  Google Scholar 

  • Ishihara T, Takita Y (2001) Partial oxidation of methane into syngas with oxygen permeating ceramic membrane reactors. Catal Surv Jpn 4(2):125–133

    Article  Google Scholar 

  • Ishihara T, Matsuda H, Takita Y (1994) Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J Am Chem Soc 116(9):3801–3803

    Article  Google Scholar 

  • Itoh N, Kato T, Uchida K, Haraya K (1994) Preparation of pore-free disk of La1−xSrxCoO3 mixed conductor and its oxygen permeability. J Membr Sci 92(3):239–246

    Article  Google Scholar 

  • Jin W, Li S, Huang P, Xu N, Shi J, Lin YS (2000) Tubular lanthanum cobaltite perovskite-type membrane reactors for partial oxidation of methane to syngas. J Membr Sci 166(1):13–22

    Article  Google Scholar 

  • Kapteijn F, Nijhuis TA, Heiszwolf JJ, Moulijn JA (2001) New non-traditional multiphase catalytic reactors based on monolithic structures. Catal Today 66(2):133–144

    Article  Google Scholar 

  • Kather A, Scheffknecht G (2009) The oxycoal process with cryogenic oxygen supply. Naturwissenschaften 96(9):993–1010

    Article  Google Scholar 

  • Kim J, Lin YS (2000) Synthesis and oxygen permeation properties of ceramic-metal dual-phase membranes. J Membr Sci 167(1):123–133

    Article  Google Scholar 

  • Kim SK, Shin MJ, Rufner J, van Benthem K, Yu JH, Kim S (2014) Sr0.95Fe0.5Co0.5O3−δ–Ce0.9Gd0.1O2−δ dual-phase membrane: oxygen permeability, phase stability, and chemical compatibility. J Membr Sci 462:153–159

    Article  Google Scholar 

  • Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics. Wiley, Toronto

    Google Scholar 

  • Klande T, Ravkina O, Feldhoff A (2013) Effect of A-site lanthanum doping on the CO2 tolerance of SrCo0.8Fe0.2O3−-δ oxygen-transporting membranes. J Membr Sci 437:122–130

    Article  Google Scholar 

  • Komaki A, Gotou T, Uchida T, Yamada T, Kiga T, Spero C (2014) Operation experiences of oxyfuel power plant in Callide Oxyfuel project. Energy Procedia 63:490–496

    Article  Google Scholar 

  • Kovalevsky AV, Kharton VV, Tikhonovich VN, Naumovich EN, Tonoyan AA, Reut OP, Boginsky LS (1998) Oxygen permeation through Sr(Ln)CoO3−δ (Ln = La, Nd, Sm, Gd) ceramic membranes. Mater Sci Eng B 52(2):105–116

    Article  Google Scholar 

  • Kovalevsky AV, Yaremchenko AA, Kolotygin VA, Snijkers FMM, Kharton VV, Buekenhoudt A, Luyten JJ (2011) Oxygen permeability and stability of asymmetric multilayer Ba0.5Sr0.5Co0.8Fe0.2O3−δ ceramic membranes. Solid State Ionics 192(1):677–681

    Article  Google Scholar 

  • Kruidhof H, Bouwmeester HJM, van Doorn RHE, Burggraaf AJ (1993) Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides. Solid State Ionics 63-65:816–822

    Article  Google Scholar 

  • Kuharuangrong S (2007) Ionic conductivity of Sm, Gd, Dy and Er-doped ceria. J Power Sources 171(2):506–510

    Article  Google Scholar 

  • Lee TH, Yang YL, Jacobson AJ (2000) Electrical conductivity and oxygen permeation of Ag/BaBi8O13 composites. Solid State Ionics 134(3):331–339

    Article  Google Scholar 

  • Leo A, Liu S, Diniz da Costa JC (2009) Development of mixed conducting membranes for clean coal energy delivery. Int J Greenh Gas Control 3(4):357–367

    Article  Google Scholar 

  • Li W, Liu J-J, Chen C-S (2009a) Hollow fiber membrane of yttrium-stabilized zirconia and strontium-doped lanthanum manganite dual-phase composite for oxygen separation. J Membr Sci 340(1):266–271

    Article  Google Scholar 

  • Li W, Tian T-F, Shi F-Y, Wang Y-S, Chen C-S (2009b) Ce0.8Sm0.2O2−δ−La0.8Sr0.2MnO3−δ dual-phase composite hollow fiber membrane for oxygen separation. Ind Eng Chem Res 48(12):5789–5793

    Article  Google Scholar 

  • Li H, Liu Y, Zhu X, Cong Y, Xu S, Xu W, Yang W (2013a) Oxygen permeation through Ca-contained dual-phase membranes for oxyfuel CO2 capture. Sep Purif Technol 114:31–37

    Article  Google Scholar 

  • Li X, Kerstiens T, Markus T (2013b) Oxygen permeability and phase stability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite at intermediate temperatures. J Membr Sci 438:83–89

    Article  Google Scholar 

  • Li H, Zhu X, Liu Y, Wang W, Yang W (2014) Comparative investigation of dual-phase membranes containing cobalt and iron-based mixed conducting perovskite for oxygen permeation. J Membr Sci 462:170–177

    Article  Google Scholar 

  • Li C, Chew JJ, Mahmoud A, Liu S, Sunarso J (2018) Modelling of oxygen transport through mixed ionic-electronic conducting (MIEC) ceramic-based membranes: an overview. J Membr Sci 567:228–260

    Article  Google Scholar 

  • Liu S, Tan X, Li K, Hughes R (2001) Preparation and characterisation of SrCe0.95Yb0.05O2.975 hollow fibre membranes. J Membr Sci 193:249–260

    Article  Google Scholar 

  • Liu S, Li K, Hughes R (2004) Preparation of SrCe0.95Yb0.05O3−α perovskite for use as a membrane material in hollow fibre fabrication. Mater Res Bull 39(1):119–133

    Article  Google Scholar 

  • Luo H, Klande T, Cao Z, Liang F, Wang H, Caro J (2014) A CO2-stable reduction-tolerant Nd-containing dual phase membrane for oxyfuel CO2 capture. J Mater Chem A 2(21):7780–7787

    Article  Google Scholar 

  • Luyten J, Buekenhoudt A, Adriansens W, Cooymans J, Weyten H, Servaes F, Leysen R (2000) Preparation of LaSrCoFeO3−x membranes. Solid State Ionics 135(1):637–642

    Article  Google Scholar 

  • Maas P, Nauels N, Zhao L, Markewitz P, Scherer V, Modigell M, Stolten D, Hake JF (2016) Energetic and economic evaluation of membrane-based carbon capture routes for power plant processes. Int J Greenh Gas Control 44:124–139

    Article  Google Scholar 

  • Magnone E, Chae J, Park JH (2018) Synthesis and oxygen permeation properties of Ce0.8Sm0.2O2-d - Sm1-xSrxCu0.2Fe0.8O3-d dual-phase ceramic membranes: effect of strontium contents and Pd coating layer. Ceram Int 44(11):12948–12956

    Article  Google Scholar 

  • Mazanec TJ, Cable TL, Frye JG (1992) Electrocatalytic cells for chemical reaction. Solid State Ionics 53-56:111–118

    Article  Google Scholar 

  • Megaw HD (1973) Crystal structures: a working approach. Saunders, London

    Google Scholar 

  • Pfaff I, Kather A (2009) Comparative thermodynamic analysis and integration issues of CCS steam power plants based on oxy-combustion with cryogenic or membrane based air separation. Energy Procedia 1(1):495–502

    Article  Google Scholar 

  • Rehfeldt S, Kuhr C, Schiffer F-P, Weckes P, Bergins C (2011) First test results of oxyfuel combustion with Hitachi’s DST-burner at Vattenfall’s 30 MWth Pilot Plant at Schwarze Pumpe. Energy Procedia 4:1002–1009

    Article  Google Scholar 

  • Sammes NM, Tompsett GA, Näfe H, Aldinger F (1999) Bismuth based oxide electrolytes – structure and ionic conductivity. J Eur Ceram Soc 19(10):1801–1826

    Article  Google Scholar 

  • Samson AJ, Søgaard M, Vang Hendriksen P (2014) (Ce,Gd)O2−δ-based dual phase membranes for oxygen separation. J Membr Sci 470:178–188

    Article  Google Scholar 

  • Schlehuber D, Wessel E, Singheiser L, Markus T (2010) Long-term operation of a La0.58Sr0.4Co0.2Fe0.8O3−δ-membrane for oxygen separation. J Membr Sci 351(1):16–20

    Article  Google Scholar 

  • Serra JM, Garcia-Fayos J, Baumann S, Schulze-Küppers F, Meulenberg WA (2013) Oxygen permeation through tape-cast asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3−δ membranes. J Membr Sci 447:297–305

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32(5):751–767

    Article  Google Scholar 

  • Shao Z, Xiong G, Cong Y, Yang W (2000a) Synthesis and oxygen permeation study of novel perovskite-type BaBixCo0.2Fe0.8−xO3−δ ceramic membranes. J Membr Sci 164(1):167–176

    Article  Google Scholar 

  • Shao Z, Yang W, Cong Y, Dong H, Tong J, Xiong G (2000b) Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane. J Membr Sci 172(1–2):177–188

    Article  Google Scholar 

  • Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S, Lin YS, da Costa JCD (2008) Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Membr Sci 320(1–2):13–41

    Article  Google Scholar 

  • Sunarso J, Liu S, Lin J, Diniz Da Costa JC (2009) Oxygen permeation performance of BaBiO3−δ ceramic membranes. J Membr Sci 344:281–287

    Article  Google Scholar 

  • Sunarso J, Liu S, Lin YS, Diniz da Costa JC (2011) High performance BaBiScCo hollow fibre membranes for oxygen transport. Energy Environ Sci 4(7):2516–2519

    Article  Google Scholar 

  • Švarcová S, Wiik K, Tolchard J, Bouwmeester HJM, Grande T (2008) Structural instability of cubic perovskite BaxSr1−xCo1−yFeyO3−δ. Solid State Ionics 178(35):1787–1791

    Article  Google Scholar 

  • Tan X, Li K (2002) Modeling of air separation in a LSCF hollow-fiber membrane module. AICHE J 48(7):1469–1477

    Article  Google Scholar 

  • Tan X, Wang Z, Meng B, Meng X, Li K (2010) Pilot-scale production of oxygen from air using perovskite hollow fibre membranes. J Membr Sci 352(1):189–196

    Article  Google Scholar 

  • ten Elshof JE, Bouwmeester HJM, Verweij H (1995) Oxygen transport through La1−xSrxFeO3−δ membranes I permeation in air/He gradients. Solid State Ionics 81(1):97–109

    Google Scholar 

  • Teraoka Y, Zhang H-M, Furukawa S, Yamazoe N (1985) Oxygen permeation through perovskite-type oxides. Chem Lett 14(11):1743–1746

    Article  Google Scholar 

  • Teraoka Y, Nobunaga T, Yamazoe N (1988) Effect of cation substitution on the oxygen semipermeability of perovskite-type oxides. Chem Lett 17(3):503–506

    Article  Google Scholar 

  • Tilley RJD (2005) Understanding solids: the science of materials. Wiley, Chichester

    Google Scholar 

  • Tsai CY, Dixon AG, Moser WR, Ma YH (1997) Dense perovskite membrane reactors for partial oxidation of methane to syngas. AICHE J 43(S11):2741–2750

    Article  Google Scholar 

  • Tsai C-Y, Dixon AG, Ma YH, Moser WR, Pascucci MR (1998) Dense perovskite, La1-xA′xFe1-yCoyO3-δ (A′= Ba, Sr, Ca), membrane synthesis, applications, and characterization. J Am Ceram Soc 81(6):1437–1444

    Article  Google Scholar 

  • Wagner C (1975) Equations for transport in solid oxides and sulfides of transition metals. Prog Solid State Chem 10(1):3–16

    Article  Google Scholar 

  • Wang H, Cong Y, Yang W (2002) Oxygen permeation study in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen permeable membrane. J Membr Sci 210(2):259–271

    Article  Google Scholar 

  • Wang L, Imashuku S, Grimaud A, Lee D, Mezghani K, Habib MA, Shao-Horn Y (2013a) Enhancing oxygen permeation of electronically short-circuited oxygen-ion conductors by decorating with mixed ionic-electronic conducting oxides. ECS Electrochem Lett 2(11):F77–F81

    Article  Google Scholar 

  • Wang Z, Sun W, Zhu Z, Liu T, Liu W (2013b) A novel cobalt-free, CO2-stable, and reduction-tolerant dual-phase oxygen-permeable membrane. ACS Appl Mater Interfaces 5(21):11038–11043

    Article  Google Scholar 

  • Wang T, Liu Z, Xu X, Zhu J, Zhang G, Jin W (2020) Insights into the design of nineteen-channel perovskite hollow fiber membrane and its oxygen transport behaviour. J Membr Sci 595:117600

    Article  Google Scholar 

  • Watanabe K, Yuasa M, Kida T, Shimanoe K, Teraoka Y, Yamazoe N (2008a) Dense/porous asymmetric-structured oxygen permeable membranes based on La0.6Ca0.4CoO3 perovskite-type oxide. Chem Mater 20(22):6965–6973

    Article  Google Scholar 

  • Watanabe K, Yuasa M, Kida T, Shimanoe K, Teraoka Y, Yamazoe N (2008b) Preparation of oxygen evolution layer/La0.6Ca0.4CoO3 dense membrane/porous support asymmetric structure for high-performance oxygen permeation. Solid State Ionics 179(27):1377–1381

    Article  Google Scholar 

  • World Nuclear Association (2020) ‘Clean Coal’ Technologies, Carbon Capture & Sequestration. https://www.world-nuclear.org/information-library/energy-and-the-environment/clean-coal-technologies.aspx. Accessed 21 July 2020

  • Wu K, Xie S, Jiang GS, Liu W, Chen CS (2001) Oxygen permeation through (Bi2O3)0.74(SrO)0.26–Ag (40% v/o) composite. J Membr Sci 188(2):189–193

    Article  Google Scholar 

  • Xu SJ, Thomson WJ (1999) Oxygen permeation rates through ion-conducting perovskite membranes. Chem Eng Sci 54:3839–3850

    Article  Google Scholar 

  • Zhang K, Sunarso J, Shao Z, Zhou W, Sun C, Wang S, Liu S (2011) Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production. RSC Adv 1(9):1661–1676

    Article  Google Scholar 

  • Zhang K, Shao Z, Li C, Liu S (2012) Novel CO2-tolerant ion-transporting ceramic membranes with an external short circuit for oxygen separation at intermediate temperatures. Energy Environ Sci 5(1):5257–5264

    Article  Google Scholar 

  • Zhang K, Liu L, Shao Z, Xu R, Diniz da Costa JC, Wang S, Liu S (2013) Robust ion-transporting ceramic membrane with an internal short circuit for oxygen production. J Mater Chem A 1(32):9150–9156

    Article  Google Scholar 

  • Zhang K, Liu L, Sunarso J, Yu H, Pareek V, Liu S (2014) Highly stable external short-circuit-assisted oxygen ionic transport membrane reactor for carbon dioxide reduction coupled with methane partial oxidation. Energy Fuel 28(1):349–355

    Article  Google Scholar 

  • Zhang C, Meng X, Sunarso J, Liu L, Xu R, Shao Z, Liu S (2015) Oxygen permeation behavior through Ce0.9Gd0.1O2−δ membranes electronically short-circuited by dual-phase Ce0.9Gd0.1O2−δ–Ag decoration. J Mater Chem A 3(37):19033–19041

    Article  Google Scholar 

  • Zhang C, Sunarso J, Liu S (2017) Designing CO2-resistant oxygen-selective mixed ionic-electronic conducting membranes: guidelines, recent advances, and forward directions. Chem Soc Rev 46(10):2941–3005

    Article  Google Scholar 

  • Zhu X, Yang W (2017) Mixed conducting ceramic membranes: fundamentals, materials and applications. Green chemistry and sustainable technology. Springer, Berlin

    Book  Google Scholar 

  • Zhu X, Li Q, He Y, Cong Y, Yang W (2010) Oxygen permeation and partial oxidation of methane in dual-phase membrane reactors. J Membr Sci 360(1):454–460

    Article  Google Scholar 

  • Zhu X, Liu H, Cong Y, Yang W (2012a) Novel dual-phase membranes for CO2 capture via an oxyfuel route. Chem Commun 48(2):251–253

    Article  Google Scholar 

  • Zhu X, Liu H, Cong Y, Yang W (2012b) Permeation model and experimental investigation of mixed conducting membranes. AICHE J 58(6):1744–1754

    Article  Google Scholar 

  • Zhu X, Liu Y, Cong Y, Yang W (2013) Ce0.85Sm0.15O1.925–Sm0.6Sr0.4Al0.3Fe0.7O3 dual-phase membranes: one-pot synthesis and stability in a CO2 atmosphere. Solid State Ionics 253:57–63

    Article  Google Scholar 

  • Zhu J, Wang T, Song Z, Liu Z, Zhang G, Jin W (2017a) Enhancing oxygen permeation via multiple types of oxygen transport paths in hepta-bore perovskite hollow fibers. AICHE J 63(10):4273–4277

    Article  Google Scholar 

  • Zhu J, Zhang G, Liu G, Liu Z, Jin W, Xu N (2017b) Perovskite hollow fibers with precisely controlled cation stoichiometry via one-step thermal processing. Adv Mater 29(18):1606377

    Article  Google Scholar 

  • Zhu Y, Li W, Liu Y, Zhu X, Yang W (2017c) Selection of oxygen permeation models for different mixed ionic-electronic conducting membranes. AICHE J 63(9):4043–4053

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the research funding provided by the Australian Research Council (DP180103861) and the National Natural Science Foundation of China (91745116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaka Sunarso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Li, C., Sunarso, J., Zhang, K., Tan, X., Liu, S. (2021). High-Temperature Oxygen Separation Using Dense Ceramic Membranes. In: Lackner, M., Sajjadi, B., Chen, WY. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6431-0_94-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6431-0_94-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6431-0

  • Online ISBN: 978-1-4614-6431-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    High-Temperature Oxygen Separation Using Dense Ceramic Membranes
    Published:
    31 July 2021

    DOI: https://doi.org/10.1007/978-1-4614-6431-0_94-2

  2. Original

    High Temperature Oxygen Separation Using Dense Ceramic Membranes
    Published:
    05 October 2015

    DOI: https://doi.org/10.1007/978-1-4614-6431-0_94-1