Skip to main content

Distribution Ecology in Conservation Biology

  • Chapter
  • First Online:
Distribution Ecology

Abstract

Conservation biology uses ecology as one of the main sciences that provide theoretical paradigms and methodologies to further its aim of developing solutions to the biodiversity crisis. Some of the most important areas of concern in conservation biology are sustainable management, protection of endangered species, design and management of protected areas, the preservation of ecosystems, and global climate change. Before analysing the contribution of distribution ecology to conservation biology, we will see a brief description of each of these areas. The contributions of distribution ecology to biodiversity conservation are arranged according to levels of organisation, in the following sections: individual (and gene) distribution, aggregated distributions, metapopulations and source–sinks, landscape ecology and pattern-based models, species distribution models, and ensemble distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beaumont LJ, Hughes L, Poulsen M (2005) Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol Model 186:250–269

    Google Scholar 

  • Berry PM, Dawson TP, Harrison PA, Pearson G (2002) Modelling potential impacts of climate change on the bioclimatic envelope of species in Britain and Ireland. Glob Ecol Biogeogr 11:453–462

    Google Scholar 

  • Bertonatti C, Corcuera J (2000) Situación ambiental Argentina 2000. Fundación Vida Silvestre Argentina, Buenos Aires

    Google Scholar 

  • Borgnia M, Galante ML, Cassini MH (2000) Diet of the coypu (Myocastor coypus) in agro-systems of the Argentinean Pampas. J Wildl Manage 64:354–361

    Google Scholar 

  • Brereton R, Bennett S, Mansergh I (1995) Enhanced greenhouse climate change and its potential effect on selected fauna of South‐Eastern Australia: a trend analysis. Biol Conserv 72:339–354

    Google Scholar 

  • Carter J, Leonard BP (2002) A review of the literature on the worldwide distribution, spread of, and efforts to eradicate the coypu (Myocastor coypus). Wildl Soc Bull 30:162–175

    Google Scholar 

  • Cassini MH (1999) The evolution of reproductive systems of pinnipeds. Behav Ecol 10:612–616

    Google Scholar 

  • Cassini MH (2001) Behavioral responses of South American fur seals to approach by tourists—a brief report. Appl Anim Behav Sci 71:341–346

    Google Scholar 

  • Cassini MH, Szteren D, Fernández Juricic E (2004) Fence effects on the behavioural responses of South American fur seals to tourist approaches. J Ethol 22:127–133

    Google Scholar 

  • Cassini MH, Fasola L, Chéhebar C, MacDonald DW (2009) Scale-dependent analysis of an otter-crustacean system in Argentinean Patagonia. Naturwissenschaften 96:593–599

    Google Scholar 

  • Cassini MH, Fasola L, Chehébar C, Macdonald DW (2010) Defining conservation status using limited information: the case of Patagonian otters Lontra provocax in Argentina. Hydrobiologia 652:389–394

    Google Scholar 

  • Chaverri G, Kunz TH (2011) Response of a specialist bat to the loss of a critical resource. PLoS One 6:e28821. doi:10.1371/journal.pone.0028821

  • Clavero M, Garcia-Berthou E (2005) Invasive species are a leading cause of animal extinctions. Trends Ecol Evol 20:110

    Google Scholar 

  • Crowder LB, Hazen EL, Avissar N, Bjorkland R, Latanich C, Ogburn MB (2008) The impacts of fisheries on marine ecosystems and the transition to ecosystem-based management. Annu Rev Ecol Evol Syst 39:259–278

    Google Scholar 

  • D'adamo P, Guichón ML, Bó RF, Cassini MH (2000) Habitat use of coypus (Myocastor coypus) in agro-systems of the Argentinean Pampas. Acta Theriol 45:25–33

    Google Scholar 

  • Eeley HA, Lawes MJ, Piper SE (1999) The influence of climate change on the distribution of indigenous forest in Kwa‐Zulu‐ Natal, South Africa. J Biogeogr 26:595–617

    Google Scholar 

  • Eigenbrod F, Hecnar SJ, Fahrig L (2008) Accessible habitat: an improved measure of the effects of habitat loss and roads on wildlife populations. Landsc Ecol 23:159–168

    Google Scholar 

  • Erasmus BFN, Van Jaarsveld AS, Chown SL, Kshatriya M, Wessels KJ (2002) Vulnerability of South African animal taxa to climate change. Glob Chang Biol 8:679–693

    Google Scholar 

  • Guichón ML, Cassini MH (1999) Local determinants of the distribution of the coypu (Myocastor coypus) along Luján River, East-Central Argentina. J Wildl Manage 63:895–900

    Google Scholar 

  • Guichón ML, Cassini MH (2005) Effect of hunting pressure on population structure of coypus in the Pampas region (Argentina). Acta Theriol 50:125–132

    Google Scholar 

  • Guichón ML, Benítez VB, Abba A, Borgnia M, Cassini MH (2003a) Foraging behaviour of coypus Myocastor coypus in the Argentinean Pampas: why do coypus consume aquatic plants? Acta Oecol 24:241–246

    Google Scholar 

  • Guichón ML, Borgnia M, Fernández Righi C, Cassini GH, Cassini MH (2003b) Social behaviour of coypus (Myocastor coypus) in the Argentinean pampas. J Mammal 84:169–177

    Google Scholar 

  • Guichón ML, Doncaster CP, Cassini MH (2003c) Population structure of coypus (Myocastor coypus) in their region of origin and comparison with introduced populations. J Zool 261:265–272

    Google Scholar 

  • Gutierrez D (2005) Effectiveness of existing reserves in the long-term protection of a regionally rare butterfly. Conserv Biol 19:1586–1597

    Google Scholar 

  • Hall ER (1981) The mammals of North America. Wiley, New York

    Google Scholar 

  • Hastings A, Cuddington K, Davies KF, Dugaw CJ, Elmendorf S, Freestone A, Harrison S, Holland M, Lambrinos J, Malvadkar U, Melbourne BA, Moore K, Taylor C, Thomson D (2005) The spatial spread of invasions: new developments in theory and evidence. Ecol Lett 8:91–101

    Google Scholar 

  • IUCN (2001) IUCN red list categories and criteria: version 3.1. IUCN Species Survival Commission, Gland

    Google Scholar 

  • IUCN (2003) Guidelines for application of IUCN red list criteria at regional levels: version 3.0. IUCN Species Survival Commission, Gland

    Google Scholar 

  • Kaschner K, Watson R, Trites AW, Pauly D (2006) Mapping worldwide distributions of marine mammals using a relative environmental suitability (RES) model. Mar Ecol Prog Ser 316:285–310

    Google Scholar 

  • Kattan GH (1992) Rarity and vulnerability: the birds of the Cordillera Central of Colombia. Conserv Biol 6:64–70

    Google Scholar 

  • Kerkhoff AJ, Milne BT, Maehr DS (2000) Toward a panther-centered view of the forests of south Florida. Conserv Ecol 4:1

    Google Scholar 

  • Laundre JW, Hernandez L, Ripple WJ (2010) The landscape of fear: ecological implications of being afraid. Open Ecol J 3:1–7

    Google Scholar 

  • Laurance WF (1991) Ecological correlates of extinction proneness in Australian tropical rain forest mammals. Conserv Biol 5:79–89

    Google Scholar 

  • Leggieri L, Guichón ML, Cassini MH (2011) Distribution of coypu (Myocastor coypus) in Argentinean Pampas: landscape correlates and integration with smaller ecological scales. Ital J Zool 78:124–129

    Google Scholar 

  • Lucifora LO, García VB, Worm B (2011) Global diversity hotspots and conservation priorities for sharks. PLoS One 6:219356

    Google Scholar 

  • Lucifora LO, García VB, Menni RC, Worm B (2012) Spatial patterns in the diversity of sharks, rays, and chimaeras (Chondrichthyes) in the Southwest Atlantic. Biodivers Conserv 21:407–419

    Google Scholar 

  • Meynecke JO (2004) Effects of global climate change on geographic distributions of vertebrates in North Queensland. Ecol Model 174:347–357

    Google Scholar 

  • Midgley GF, Hannah L, Millar D, Rutherford MC, Powrie LW (2002) Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Glob Ecol Biogeogr 11:445–451

    Google Scholar 

  • Moreno S, Villafuerte R (1995) Traditional management of scrubland for the conservation of rabbits Oryctolagus cuniculus and their predators in Doñana National Park, Spain. Biol Conserv 73:81–85

    Google Scholar 

  • Patriquin KJ, Barclay RMR (2003) Foraging by bats in cleared, thinned, and unharvested boreal forest. J Appl Ecol 40:646–657

    Google Scholar 

  • Pearson DL, Cassola F (1992) World-wide species richness patterns of tiger beetles (Coleoptera: Cincindelidae): indicator taxon for biodiversity and conservation studies. Conserv Biol 6:376–391

    Google Scholar 

  • Peterson AT, Ortega Huerta MA, Bartley J, Sanchez‐Cordero V, Soberon J, Buddemeier RH, Stockwell DRB (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416:626–629

    Google Scholar 

  • Regan HM, Auld TD, Keith DA, Burgman MA (2003) The effects of fire and predators on the long-term persistence of an endangered shrub, Grevillea caleyi. Biol Conserv 109:73–83

    Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgley GF, Miles L, Ortega Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    Google Scholar 

  • Trebilco R, Halpern BS, Mills Flemming J, Field C, Blanchard W, Worm B (2011) Mapping species richness and human impact drivers to inform global pelagic conservation prioritization. Biol Conserv 144:1758–1766

    Google Scholar 

  • Túnez JI, Guichón ML, Centrón D, Henderson A, Callahan C, Cassini MH (2009) Kinship and social organisation in coypus of Argentinean pampas. Mol Ecol 18:147–155

    Google Scholar 

  • Valenzuela L, Sironi M, Rowntree V, Seger J (2009) Isotopic and genetic evidence for culturally inherited site fidelity to feeding grounds in southern right whales (Eubalaena australis). Mol Ecol 18:782–791

    Google Scholar 

  • Velando A, Munilla I (2011) Disturbance to a foraging seabird by sea-based tourism: implications for reserve management in marine protected areas. Biol Conserv 144:1167–1174

    Google Scholar 

  • Wiens JJ (2009) Paleontology, genomics, and combined-data phylogenetics: can molecular data improve phylogeny estimation for fossil taxa? Syst Biol 58:87–99

    Google Scholar 

  • Williams SE, Bolitho EE, Fox S (2003) Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proc R Soc Lond B 270:1887–1892

    Google Scholar 

  • Worm B, Duffy JE (2003) Biodiversity, productivity and stability in real food webs. Trends Ecol Evol 18:628–632

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cassini, M.H. (2013). Distribution Ecology in Conservation Biology. In: Distribution Ecology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6415-0_10

Download citation

Publish with us

Policies and ethics