Skip to main content

Some Affine Invariants Revisited

  • Chapter
  • First Online:
Asymptotic Geometric Analysis

Part of the book series: Fields Institute Communications ((FIC,volume 68))

Abstract

We present several sharp inequalities for the SL(n) invariant Ω 2, n (K) introduced in our earlier work on centro-affine invariants for smooth convex bodies containing the origin. A connection arose with the Paouris-Werner invariant Ω K defined for convex bodies K whose centroid is at the origin. We offer two alternative definitions for Ω K when KC + 2. The technique employed prompts us to conjecture that any SL(n) invariant of convex bodies with continuous and positive centro-affine curvature function can be obtained as a limit of normalized p-affine surface areas of the convex body.

Mathematical Subject Classifications (2010): 52A40, 52A38, 52A20, 53A07

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.M. Ball, in Volumes of Sections of Cubes and Related Problems, Israel Seminar on G.A.F.A., 1987–88, ed. by Lindenstrauss and Milman, Lecture Notes in Mathematics, Vol. 1376, (Springer, Berlin, 1989) pp. 251–260

    Google Scholar 

  2. K.M. Ball, Volume ratios and a reverse isoperimetric inequality. J. London Math. Soc. 44, 351–359 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Bárány, Affine perimeter and limit shape. J. Reine Angew. Math. 484, 71–84 (1997)

    MathSciNet  MATH  Google Scholar 

  4. K. Böröczky, E. Lutwak, D. Yang, G. Zhang, The logarithmic Minkowski problem, to appear in J. Amer. Math. Soc.

    Google Scholar 

  5. K. Chou, X.-J. Wang, The L p -Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math. 205, 33–83 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Cianchi, E. Lutwak, D. Yang, G. Zhang, Affine Moser-Trudinger and Morrey-Sobolev inequalities. Calc. Var. Partial Diff. Equations 36, 419–436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. P.M. Gruber, Asymptotic estimates for best and stepwise approximation of convex bodies II. Forum Math. 5, 521–538 (1993)

    MathSciNet  MATH  Google Scholar 

  8. C. Haberl, M. Ludwig, A characterization of L p intersection bodies. Int. Math. Res. Not. 2006, 1–29 (2006). doi:10. 1155/imrn/2006/10548.

    Google Scholar 

  9. C. Haberl, E. Lutwak, D. Yang, G. Zhang, The even Orlicz Minkowski problem. Adv. Math. 224, 2485–2510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Haberl, F. Schuster, Asymmetric affine L p Sobolev inequalities. J. Funct. Anal. 257, 641–658 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Haberl, F. Schuster, General L p affine isoperimetric inequalities. J. Differential Geom. 83, 1–26 (2009)

    MathSciNet  MATH  Google Scholar 

  12. D. Hug, Curvature Relations and Affine Surface Area for a General Convex Body and its Polar. Results in Math. 29, 233–248 (1996)

    MathSciNet  MATH  Google Scholar 

  13. D. Hug, Contributions to affine surface area, Manuscripta Math. 91, 283–301 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Leichtweiss, Affine Geometry of Convex Bodies (John Wiley and Sons, New York, 1999)

    Google Scholar 

  15. M. Ludwig, Minkowski valuations. Trans. Amer. Math. Soc. 357, 4191–4213 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Ludwig, General affine surface areas. Adv. Math. 224, 2346–2360 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Ludwig, Fisher information and matrix-valued valuations. Adv. Math. 226, 2700–2711 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Ludwig, M. Reitzner, A classification of SL(n) invariant valuations. Annals of Math. 172, 1223–1271 (2010)

    Article  MathSciNet  Google Scholar 

  19. M. Ludwig, J. Xiao, G. Zhang, Sharp convex Lorentz-Sobolev inequalities. Math. Ann. 350, 169–197 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Lutwak, The Brunn-Minkowski-Firey theory. I: Mixed volumes and the Minkowski problem. J. Differential Geom. 38, 131–150 (1993)

    MathSciNet  MATH  Google Scholar 

  21. E. Lutwak, The Brunn-Minkowski-Firey theory II: Affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Lutwak, V. Oliker, On the regularity of solutions to a generalization of the Minkowski problem. J. Differential Geom. 41, 227–246 (1995)

    MathSciNet  MATH  Google Scholar 

  23. E. Lutwak, D. Yang, G. Zhang, L p affine isoperimetric inequalities. J. Differential Geom. 56, 111–132 (2000)

    MathSciNet  MATH  Google Scholar 

  24. E. Lutwak, D. Yang, G. Zhang, Sharp affine L p Sobolev inequalities. J. Differential Geom. 62, 17–38 (2002)

    MathSciNet  MATH  Google Scholar 

  25. E. Lutwak, D. Yang, G. Zhang, Volume inequalities for subspaces of L p . J. Differential Geom. 68, 159–184 (2004)

    MathSciNet  MATH  Google Scholar 

  26. E. Lutwak, D. Yang, G. Zhang, Optimal Sobolev norms and the L p Minkowski problem. Int. Math. Res. Not. IMRN 62987, 1–10 (2006)

    Google Scholar 

  27. E. Lutwak, D. Yang, G. Zhang, Cramér-Rao and moment-entropy inequalities for Renyi entropy and generalized Fisher information. IEEE Trans. Inform. Theory 51, 473–478 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. E. Lutwak, G. Zhang, Blaschke–Santaló inequalities. J. Differential Geom. 47, 1–16 (1997)

    MathSciNet  MATH  Google Scholar 

  29. M. Meyer, E. Werner, On the p-affine surface area. Adv. Math. 152, 288–313 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Paouris, E. Werner, Relative entropy of cone measures and L p centroid bodies. Proc. London Math. Soc. Vol. 104, 253–286 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. C.M. Petty, Affine isoperimetric problems, in Discrete Geometry and Convexity ed. by J.E. Goodman, E. Lutwak, J. Malkevitch, R. Pollack. Proceedings Conference New York 1982. Annals of the New York Academic of Sciences, vol. 440, 1985, pp. 113–127

    Google Scholar 

  32. R. Schneider, Convex bodies: The Brunn-Minkowski theory (Cambridge Univ. Press, New York, 1993)

    Book  MATH  Google Scholar 

  33. C. Schütt, E. Werner, Surface bodies and p-affine surface area. Adv. Math. 187, 98–145 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Stancu, Centro-Affine Invariants for Smooth Convex Bodies. Int. Math. Res. Notices 2012, 2289–2320 (2012) doi: 10. 1093/imrn/rnr110.

    Google Scholar 

  35. N.S. Trudinger, X.-J. Wang, The Bernstein problem for affine maximal hypersurfaces. Invent. Math. 140, 399–422 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. N.S. Trudinger, X.-J. Wang, Affine complete locally convex hypersurfaces. Invent. Math. 150, 45–60 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. N.S. Trudinger, X.-J. Wang, The Affine Plateau Problem. J. Amer. Math. Soc. 18, 253–289 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. N.S. Trudinger, X.-J. Wang, Boundary regularity for the Monge-Ampère and affine maximal surface equations. Ann. of Math. 167, 993–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. E. Werner, D. Ye, New L p affine isoperimetric inequalities. Adv. in Math. 218, 762–780 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. E. Werner, D. Ye, Inequalities for mixed p-affine surface area. Math. Annalen 347, 703–737 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am thankful to Monika Ludwig, Vitali Milman and Nicole Tomczak-Jaegermann, the organizers of the 2010 Workshop on Asymptotic Geometric Analysis and Convexity, for the invitation to participate, to the Fields Institute for the hospitality and, to all of the above, for the stimulating atmosphere during my stay there.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Stancu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stancu, A. (2013). Some Affine Invariants Revisited. In: Ludwig, M., Milman, V., Pestov, V., Tomczak-Jaegermann, N. (eds) Asymptotic Geometric Analysis. Fields Institute Communications, vol 68. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6406-8_16

Download citation

Publish with us

Policies and ethics