Skip to main content

Theory of Differential Approximations of Radiative Transfer Equation

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 41))

Abstract

The radiative transfer equation (RTE) arises in a variety of applications. The equation is challenging to solve numerically for a couple of reasons: high dimensionality, integro-differential form, highly forward-peaked scattering in application. In the literature, various approximations of RTE have been proposed in the literature. In an earlier publication, we explored a family of differential approximations to RTE, to be called RT/DA equations. In this paper, we study the RT/DA equations and investigate numerically the closeness of solutions of the RT/DA equations to that of the RTE.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Agoshkov, Boundary Value Problems for Transport Equations, Birkhäuser, Boston, 1998.

    Book  MATH  Google Scholar 

  2. T. Apel and C. Pester, Clement-type interpolation on spherical domains—interpolation error estimates and application to a posteriori error estimation, IMA J. Numer. Anal., 25, 310–336 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  3. K. Atkinson and W. Han, Spherical Harmonics and Approximations on the Unit Sphere: An Introduction, Lecture Notes in Mathematics, Volume 2044, Springer-Verlag, 2012.

    Google Scholar 

  4. G. Bal and A. Tamasan, Inverse source problems in transport equations, SIAM J. Math. Anal., 39, 57–76 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Caro and J. Ligou, Treatment of scattering anisotropy of neutrons through the Boltzmann-Fokker-Planck equation, Nucl. Sci. Eng., 83, 242–250 (1983).

    Google Scholar 

  6. P. González-Rodríguez and A. D. Kim, Light propagation in tissues with forward-peaked and large-angle scattering, Applied Optics, 47, 2599–2609 (2008).

    Article  Google Scholar 

  7. W. Han, J. Eichholz, X.-L. Cheng, and G. Wang, A theoretical framework of x-ray dark-field tomography, SIAM J. Applied Math. 71 (2011), 1557–1577.

    Google Scholar 

  8. W. Han, J. Eichholz, J. Huang, and J. Lu, RTE based bioluminescence tomography: a theoretical study, Inverse Problems in Science and Engineering 19 (2011), 435–459.

    Google Scholar 

  9. W. Han, J. Eichholz, and G. Wang, On a family of differential approximations of the radiative transfer equation, Journal of Mathematical Chemistry 50 (2012), 689–702.

    Google Scholar 

  10. L. Henyey and J. Greenstein, Diffuse radiation in the galaxy, Astrophysical Journal, 93, 70–83 (1941).

    Article  Google Scholar 

  11. J. H. Joseph, W. J. Wiscombe, and J. A. Wienman, The delta-Eddington approximation for radiative flux transfer, J. Atmos. Sci., 33, 2452–2459 (1976).

    Article  Google Scholar 

  12. C. L. Leakeas and E. W. Larsen, Generalized Fokker-Planck approximations of particle transport with highly forward-peaked scattering, Nucl. Sci. Eng., 137, 236–250 (2001).

    Google Scholar 

  13. E. E. Lewis and W. F. Miller, Computational Methods of Neutron Transport, John Wiley & Sons, New York, 1984.

    Google Scholar 

  14. M. F. Modest, Radiative Heat Transfer, second ed., Academic Press, 2003.

    Google Scholar 

  15. F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction, SIAM, Philadelphia, 2001.

    Book  MATH  Google Scholar 

  16. G. C. Pomraning, The Fokker-Planck operator as an asymptotic limit, Math. Models Methods Appl. Sci., 2, 21–36 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  17. G. C. Pomraning, Higher order Fokker-Planck operators, Nucl. Sci. Eng., 124, 390–397 (1996).

    Google Scholar 

  18. K. Przybylski and J. Ligou, Numerical analysis of the Boltzmann equation including Fokker-Planck terms, Nucl. Sci. Eng., 81, 92–109 (1982).

    Google Scholar 

  19. G. E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean, Cambridge University Press, 1999.

    Google Scholar 

  20. W. Zdunkowski, T. Trautmann, and A. Bott, Radiation in the Atmosphere: A Course in Theoretical Meteorology, Cambridge University Press, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Han, W., Eichholz, J.A., Sheng, Q. (2013). Theory of Differential Approximations of Radiative Transfer Equation. In: Anastassiou, G., Duman, O. (eds) Advances in Applied Mathematics and Approximation Theory. Springer Proceedings in Mathematics & Statistics, vol 41. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6393-1_8

Download citation

Publish with us

Policies and ethics