Advertisement

An Example of Optimal Nodes for Interpolation Revisited

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 41)

Abstract

A famous unsolved problem in the theory of polynomial interpolation is that of explicitly determining a set of nodes which is optimal in the sense that it leads to minimal Lebesgue constants. In [11] a solution to this problem was presented for the first non-trivial case of cubic interpolation. We add here that the quantities that characterize optimal cubic interpolation (in particular: the minimal Lebesgue constant) can be compactly expressed as real roots of certain cubic polynomials with integral coefficients. This facilitates the presentation and impartation of the subject matter and may guide extensions to optimal higher-degree interpolation.

References

  1. 1.
    J.R. Angelos, E.H. Kaufmann jun., M.S. Henry, and T.D. Lenker, Optimal nodes for polynomial interpolation, in Approximation Theory VI, Vol. I (C.K. Chui, L.L. Schumaker, and J.D. Ward, eds.), Academic Press, New York, 1989, pp. 17–20Google Scholar
  2. 2.
    C. de Boor and A. Pinkus, Proof of the conjectures of Bernstein and Erdös concerning the optimal nodes for polynomial interpolation, J. Approx. Theory 24, 289–303 (1978)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    L. Brutman, Lebesgue functions for polynomial interpolation - A survey, Ann. Numer. Math. 4, 111–127 (1997)MathSciNetMATHGoogle Scholar
  4. 4.
    E.W. Cheney and W.A. Light, A Course in Approximation Theory, American Mathematical Society, Providence / RI, 2000Google Scholar
  5. 5.
    M.S. Henry, Approximation by polynomials: Interpolation and optimal nodes, Am. Math. Mon. 91, 497–499 (1984)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    T.A. Kilgore, Optimization of the norm of the Lagrange interpolation operator, Bull. Am. Math. Soc. 83, 1069–1071 (1977)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    T.A. Kilgore, A characterization of the Lagrange interpolating projection with minimal Tchebycheff norm, J. Approx. Theory 24, 273–288 (1978)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    G.G. Lorentz, K. Jetter, and S.D. Riemenschneider, Birkhoff Interpolation, Addison Wesley, Reading / MA, 1983MATHGoogle Scholar
  9. 9.
    G. Mastroianni and G. Milovanović, Interpolation Processes: Basic Theory and Applications, Springer, Berlin, 2008MATHCrossRefGoogle Scholar
  10. 10.
    G.M. Phillips, Interpolation and Approximation by Polynomials, Springer, New York, 2003MATHGoogle Scholar
  11. 11.
    H.-J. Rack, An example of optimal nodes for interpolation, Int. J. Math. Educ. Sci. Technol. 15, 355–357 (1984)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    F. Schurer, Omzien in tevredenheid, Afscheidscollege, Technische Universiteit Eindhoven, 2000 (in Dutch). Available at http://repository.tue.nl/540800
  13. 13.
    J. Szabados and P. Vértesi, Interpolation of Functions, World Scientific, Singapore, 1990MATHCrossRefGoogle Scholar
  14. 14.
    A.H. Tureckii, Theory of Interpolation in Problem Form, Part 1 (in Russian), Izdat “Vyseisaja Skola”, Minsk, 1968Google Scholar
  15. 15.
    WIKIPEDIA, Article on: Lebesgue constant (interpolation). Available athttp://en.wikipedia.org/wiki/Lebesgue$_$constant$_$(interpolation)

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.HagenGermany

Personalised recommendations