Skip to main content

Nonautonomous Problems

  • Chapter
  • First Online:
Structure of Solutions of Variational Problems

Part of the book series: SpringerBriefs in Optimization ((BRIEFSOPTI))

  • 1027 Accesses

Abstract

In this chapter we consider the question how to verify if an integrand possesses the turnpike property and a trajectory X is its turnpike. We introduce two properties (P1) and (P2) and show that the integrand has the turnpike property if and only if it possesses properties (P1) and (P2). The property (P2) means that all approximate solutions of the corresponding infinite horizon variational problem have the same asymptotic behavior while the property (P1) means that any approximate solution on a sufficiently large interval is close to the turnpike at some point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, B. D. O., & Moore, J. B. (1971). Linear optimal control. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  2. Arkin, V. I., & Evstigneev, I. V. (1987). Stochastic models of control and economic dynamics. London: Academic.

    Google Scholar 

  3. Aseev, S. M., & Kryazhimskiy, A. V. (2004). SIAM Journal of Control and Optimization, 43, 1094–1119.

    Article  MathSciNet  MATH  Google Scholar 

  4. Aseev, S. M., & Veliov, V. M. (2012). Dynamics of Continuous, Discrete and Impulsive Systems. Series B: Applications and Algorithms, 19, 43–63.

    Google Scholar 

  5. Aubin, J. P., & Ekeland, I. (1984). Applied nonlinear analysis. New York: Wiley Interscience.

    MATH  Google Scholar 

  6. Aubry, S., & Le Daeron, P. Y. (1983). Physica D, 8, 381–422.

    Article  MathSciNet  MATH  Google Scholar 

  7. Baumeister, J., Leitao, A., & Silva, G. N. (2007). Systems and Control Letters, 56, 188–196.

    Article  MathSciNet  MATH  Google Scholar 

  8. Berkovitz, L. D. (1974). Transactions of the American Mathematical Society, 192, 51–57.

    Article  MathSciNet  MATH  Google Scholar 

  9. Blot, J., & Cartigny, P. (2000). Journal of Optimization Theory and Applications, 106, 411–419.

    Article  MathSciNet  MATH  Google Scholar 

  10. Blot, J., & Hayek, N. (2000). ESAIM: Control, Optimisation and Calculus of Variations, 5, 279–292.

    Google Scholar 

  11. Blot, J., & Michel, P. (2003). Applied Mathematics Letters, 16, 71–78.

    Article  MathSciNet  MATH  Google Scholar 

  12. Carlson, D. A., Haurie, A., & Leizarowitz, A. (1991). Infinite horizon optimal control. Berlin: Springer.

    Book  MATH  Google Scholar 

  13. Cartigny, P., & Michel, P. (2003). Automatica Journal of IFAC, 39, 1007–1010.

    Article  MathSciNet  MATH  Google Scholar 

  14. Coleman, B. D., Marcus, M., & Mizel, V. J. (1992). Archive for Rational Mechanics and Analysis, 117, 321–347.

    Article  MathSciNet  MATH  Google Scholar 

  15. Evstigneev, I. V., & Flam, S. D. (1998). Set-Valued Analysis, 6, 61–81.

    Article  MathSciNet  MATH  Google Scholar 

  16. Gaitsgory, V., Rossomakhine, S., & Thatcher, N. (2012). Dynamics of Continuous, Discrete and Impulsive Systems. Series B: Applications and Algorithms, 19, 43–63.

    Google Scholar 

  17. Gale, D. (1967). Review of Economic Studies, 34, 1–18.

    Article  MathSciNet  Google Scholar 

  18. Guo, X., & Hernandez-Lerma, O. (2005). Bernoulli, 11, 1009–1029.

    Article  MathSciNet  MATH  Google Scholar 

  19. Jasso-Fuentes, H., & Hernandez-Lerma, O. (2008). Applied Mathematics and Optimization, 57, 349–369.

    Article  MathSciNet  MATH  Google Scholar 

  20. Leizarowitz, A. (1985). Applied Mathematics and Optimization, 13, 19–43.

    Article  MathSciNet  MATH  Google Scholar 

  21. Leizarowitz, A. (1986). Applied Mathematics and Optimization, 14, 155–171.

    Article  MathSciNet  MATH  Google Scholar 

  22. Leizarowitz, A., & Mizel, V. J. (1989). Archive for Rational Mechanics and Analysis, 106, 161–194.

    Article  MathSciNet  MATH  Google Scholar 

  23. Lykina, V., Pickenhain, S., & Wagner, M. (2008). Journal of Mathematical Analysis and Applications, 340, 498–510.

    Article  MathSciNet  MATH  Google Scholar 

  24. Makarov, V. L., & Rubinov, A. M. (1977). Mathematical theory of economic dynamics and equilibria. New York: Springer.

    Book  MATH  Google Scholar 

  25. Malinowska, A. B., Martins, N., & Torres, D. F. M. (2011). Optimization Letters, 5, 41–53.

    Article  MathSciNet  MATH  Google Scholar 

  26. Marcus, M., & Zaslavski, A. J. (1999). Israel Journal of Mathematics, 111, 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  27. Marcus, M., & Zaslavski, A. J. (1999). Annales de l’institut Henri Poincaré (C) Analyse non linéaire, 16, 593–629.

    Google Scholar 

  28. Marcus, M., & Zaslavski, A. J. (2002). Annales de l’institut Henri Poincaré (C) Analyse non linéaire, 19, 343–370.

    Google Scholar 

  29. McKenzie, L. W. (1976). Econometrica, 44, 841–866.

    Article  MathSciNet  MATH  Google Scholar 

  30. Mordukhovich, B. S. (1990). Automation and Remote Control, 50, 1333–1340.

    MathSciNet  Google Scholar 

  31. Mordukhovich, B. S., & Shvartsman, I. (2004). Optimal control, stabilization and nonsmooth analysis. Lecture Notes in Control and Information Sciences (pp. 121–132). Berlin: Springer.

    Google Scholar 

  32. Moser, J. (1986). Annales de l’institut Henri Poincaré (C) Analyse non linéaire, 3, 229–272.

    Google Scholar 

  33. Pickenhain, S., Lykina, V., & Wagner, M. (2008). Control and Cybernetics, 37, 451–468.

    MathSciNet  MATH  Google Scholar 

  34. Rubinov, A. M. (1984). Journal of Soviet mathematics, 26, 1975–2012.

    Article  MATH  Google Scholar 

  35. Samuelson, P. A. (1965). American Economic Review, 55, 486–496.

    Google Scholar 

  36. Tonelli, L. (1921). Fondamenti di calcolo delle variazioni. Bolonia: Zanicelli.

    Google Scholar 

  37. von Weizsacker, C. C. (1965). The Review of Economic Studies, 32, 85–104.

    Article  Google Scholar 

  38. Zaslavski, A. J. (1987). Mathematics of the USSR-Izvestiya, 29, 323–354.

    Article  Google Scholar 

  39. Zaslavski, A. J. (1995). SIAM Journal on Control and Optimization, 33, 1643–1660.

    Article  MathSciNet  MATH  Google Scholar 

  40. Zaslavski, A. J. (1995). SIAM Journal on Control and Optimization, 33, 1661–1686.

    Article  MathSciNet  MATH  Google Scholar 

  41. Zaslavski, A. J. (1996). Nonlinear Analysis, 27, 895–931.

    Article  MathSciNet  MATH  Google Scholar 

  42. Zaslavski, A. J. (1998). Abstract and Applied Analysis, 3, 265–292.

    Article  MathSciNet  MATH  Google Scholar 

  43. Zaslavski, A. J. (1999). Transactions of the AMS, 351, 211–231.

    Article  MathSciNet  MATH  Google Scholar 

  44. Zaslavski, A. J. (2000). Nonlinear Analysis, 42, 1465–1498.

    Article  MathSciNet  MATH  Google Scholar 

  45. Zaslavski, A. J. (2004). Nonlinear Analsis, 58, 547–569.

    Article  MathSciNet  MATH  Google Scholar 

  46. Zaslavski, A. J. (2004). Dynamical Systems and Applications, 13, 161–178.

    MathSciNet  MATH  Google Scholar 

  47. Zaslavski, A. J. (2004). Journal of Mathematical Analysis and Applications, 296, 578–593.

    Article  MathSciNet  MATH  Google Scholar 

  48. Zaslavski, A. J. (2004). Optimization, 53, 377–391.

    Article  MathSciNet  MATH  Google Scholar 

  49. Zaslavski, A. J. (2006). Journal of the Australian Mathematical Society, 80, 105–130.

    Article  MathSciNet  MATH  Google Scholar 

  50. Zaslavski, A. J. (2006). Differential and Integral Equations, 19, 1177–1200.

    MathSciNet  MATH  Google Scholar 

  51. Zaslavski, A. J. (2006). Turnpike properties in the calculus of variations and optimal control. New York: Springer.

    MATH  Google Scholar 

  52. Zaslavski, A. J. (2007). Nonlinear Analysis: Real World Applications, 8, 1186–1207.

    Article  MathSciNet  MATH  Google Scholar 

  53. Zaslavski, A. J., & Leizarowitz, A. (1997). Mathematics of Operations Research, 22, 726–746.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Alexander J. Zaslavski

About this chapter

Cite this chapter

Zaslavski, A.J. (2013). Nonautonomous Problems. In: Structure of Solutions of Variational Problems. SpringerBriefs in Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6387-0_2

Download citation

Publish with us

Policies and ethics