Advertisement

A New Catalog of Ultraviolet Stellar Spectra for Calibration

  • Martin Snow
  • Aurélie Reberac
  • Eric Quémerais
  • John Clarke
  • W. E. McClintock
  • T. N. Woods
Chapter
Part of the ISSI Scientific Report Series book series (ISSI, volume 13)

Abstract

The SOLar-STellar Irradiance Comparison Experiment (SOLSTICE) on the SOlar Radiation and Climate Experiment (SORCE) observes both the Sun and stars in the ultraviolet (115–300 nm). Prior to launch, it was calibrated at the SURF-III synchrotron. Spectra from the International Ultraviolet Explorer (IUE) corrected to the white dwarf flux scale are in good agreement with SOLSTICE observations, validating the two completely independent methods of calibration. Measurements of stars in the SOLSTICE catalog are then used to transfer this calibration to the SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) instrument. We describe the steps used to calculate the effective area for SPICAM to calibrate its stellar observations. Since only a handful of stars in the IUE archive have been converted to the white dwarf scale and many of them are relatively faint, the SOLSTICE catalog of bright stars can be an extremely useful resource for inflight calibration of ultraviolet spectrographs.

Keywords

Point Spread Function White Dwarf Wavelength Assignment Stellar Spectrum International Ultraviolet Explorer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. U. Arp, R. Friedman, M.L. Furst, S. Makar, P.S. Shaw, SURF III—an improved storage ring for radiometry. Metrologia 37, 357–360 (2000). doi:10.1088/0026-1394/37/5/2ADSCrossRefGoogle Scholar
  2. J-L. Bertaux et al., SPICAM on Mars express: observing modes and overview of uv spectrometer data and scientific results. J. Geophys. Res. 111, E10S90 (2006). doi:10.1029/2006JE002690Google Scholar
  3. J-L. Bertaux et al., SPICAV on Venus express: three spectrometers to study the global structure and composition of the Venus atmosphere. Planet. Space Sci. 55, 1673–1700 (2007)ADSCrossRefGoogle Scholar
  4. R.C. Bohlin, Spectrophotometric standards from the far-uv to the near-ir on the white dwarf flux scale. Astrophys. J. 111, 1743–1747 (1996). doi:10.1086/117914ADSGoogle Scholar
  5. R.C. Bohlin, A.V. Holm, New software — absolute calibration — iue. IUE ESA Newsletter 11, 18 (1981)ADSGoogle Scholar
  6. R.C. Bohlin, W.M. Sparks, A.V. Holm, B.D. Savage, M.A.J. Snijders, Photometric calibration of the international ultraviolet explorer (IUE): low dispersion. Astron. Astrophys. 85, 1–13 (1980)ADSGoogle Scholar
  7. R.C. Bohlin, A.W. Harris, A.V. Holm, C. Gry, The ultraviolet calibration of the hubble space telescope iv. absolute IUE fluxes of hubble space telescope standard stars. Astrophys. J. Suppl. 73, 413–439 (1990). doi:10.1086/191474Google Scholar
  8. R.C. Bohlin, M.E. Dickinson, D. Calzetti, Spectrophotometric standards from the far-ultraviolet to the near-infrared STIS and NICMOS fluxes. Astrophys. J. 122, 2118–2128 (2001). doi:10.1086/323137ADSGoogle Scholar
  9. R.C. Bohlin et al., Absolute flux calibration of the IRAC instrument on the Spitzer space telescope using hubble space telescope flux standards. Astrophys. J. 141, 173–185 (2011). doi:10.1088/004-6256/141/5/173Google Scholar
  10. E.H. Eberhardt, Gain model for microchannel plates. Appl. Opt. 18, 1418–1423 (1979). doi:10.1364/AO.18.001418ADSCrossRefGoogle Scholar
  11. E. Marcq, D. Belyaev, F. Montmessin, A. Fedorova, J-L. Bertaux, A.C. Vandaele, E. Neefs, An investigation of the SO2 content of the venusian mesosphere using SPICAV-UV in nadir mode. Icarus 211, 58–69 (2011). doi:10.1016/j.icarus.2010.08.021ADSCrossRefGoogle Scholar
  12. W.E. McClintock, G. Rottman, T.N. Woods, Solar stellar irradiance comparison experiement II (SOLSTICE II): instrument concept and design. Sol. Phys. 230, 225–258 (2005a). doi:10.1007/s11207-005-7432-xADSCrossRefGoogle Scholar
  13. W.E. McClintock, M. Snow, T.N. Woods, Solar stellar irradiance comparison experiment II (SOLSTICE II): pre-launch and on-orbit calibrations. Sol. Phys. 230, 259–294 (2005b). doi:10.1007/s11207-005-1585-5ADSCrossRefGoogle Scholar
  14. D. Mihalas, J. Binney, Galactic astronomy structure and kinematics (Freeman, New York, 1981), p. 135Google Scholar
  15. G. Rottman, The SORCE mission. Sol. Phys. 230, 7–25 (2005). doi:10.1007/s11207-005-8112-6CrossRefGoogle Scholar
  16. G. Rottman, T.N. Woods, T. Sparn, Solar stellar irradiance comparison experiment 1. I — instrument design and operations. J. Geophys. Res. 98, 10667 (1993). doi:10.1029/93JD00462Google Scholar
  17. B.R. Sandel, A.L. Broadfoot, Statistical performance of the intensified ccd. Appl. Opt. 25, 4135–4140 (1986). doi:10.1364/AO.25.004135ADSCrossRefGoogle Scholar
  18. M. Snow, W.E. McClintock, G. Rottman, T.N. Woods, Solar stellar irradiance comparison experiment II (SOLSTICE II): examination of the solar-stellar comparison technique. Sol. Phys. 230, 295–324 (2005). doi:10.1007/s11207-005-8763-3ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Martin Snow
    • 1
  • Aurélie Reberac
    • 2
  • Eric Quémerais
    • 2
  • John Clarke
    • 3
  • W. E. McClintock
    • 1
  • T. N. Woods
    • 1
  1. 1.Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderUSA
  2. 2.LATMOS-IPSL, Université Versailles-Saint QuentinGuyancourtFrance
  3. 3.Boston UniversityBostonUSA

Personalised recommendations