Skip to main content

Lyman-α Models for LRO LAMP from MESSENGER MASCS and SOHO SWAN Data

  • Chapter
  • First Online:
Cross-Calibration of Far UV Spectra of Solar System Objects and the Heliosphere

Abstract

From models of the interplanetary Lyman-α glow derived from observations by the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) interplanetary Lyman-α data obtained in 2009–2011 on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft mission, daily all-sky Lyman-α maps were generated for use by the Lunar Reconnaissance Orbiter (LRO) LAMP Lyman-Alpha Mapping Project (LAMP) experiment. These models were then compared with Solar and Heliospheric Observatory (SOHO) Solar Wind ANistropy (SWAN) Lyman-α maps when available. Although the empirical agreement across the sky between the scaled model and the SWAN maps is adequate for LAMP mapping purposes, the model brightness values best agree with the SWAN values in 2008 and 2009. SWAN’s observations show a systematic decline in 2010 and 2011 relative to the model. It is not clear if the decline represents a failure of the model or a decline in sensitivity in SWAN in 2010 and 2011. MESSENGER MASCS and SOHO SWAN Lyman-α calibrations systematically differ in comparison with the model, with MASCS reporting Lyman-α values some 30 % lower than SWAN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J.M. Ajello et al., Observations of interplanetary Lyman-alpha with the Galileo ultraviolet spectrometer: multiple scattering effects at solar maximum. Astron. Astrophys. 289, 283–303 (1994)

    ADS  Google Scholar 

  • J-L. Bertaux et al., SWAN: a study of solar wind anisotropies on SOHO with Lyman alpha sky mapping. Sol. Phys. 162, 403–439 (1995)

    Article  ADS  Google Scholar 

  • J-L. Bertaux, E. Quémerais, R. Lallement, Observations of a sky Lyman alpha groove related to enhanced solar wind mass flux in the neutral sheet. Geophys. Res. Lett. 23, 3675–3678 (1996)

    Article  ADS  Google Scholar 

  • J-L. Bertaux et al., First results from SWAN Lyman α solar wind mapper on SOHO. Sol. Phys. 175, 737–770 (1997)

    Article  ADS  Google Scholar 

  • M. Bzowski, Density of neutral interstellar hydrogen at the termination shock from Ulysses pickup ion observations. Astron. Astrophys. 491, 7–19 (2008)

    Article  ADS  Google Scholar 

  • M. Bzowski et al., Solar parameters for modeling the interplanetary background. In: Cross-Calibration of Far UV Spectra of Solar System Objects and the Heliosphere, ed. by E. Quémerais, M. Snow, R.M. Bonnet. ISSI Scientific Report Series, SR-013 (2013)

    Google Scholar 

  • J.W. Cook et al., Latitudinal anisotropy of the solar far ultraviolet flux: effect on the Lyman-alpha sky background. Astron. Astrophys. 97, 394–397 (1981)

    ADS  Google Scholar 

  • J. Costa et al., Heliospheric interstellar H temperature from SOHO/SWAN H cell data. Astron. Astrophys. 349, 660–672 (1999)

    ADS  Google Scholar 

  • C. Emerich et al., A new relation between the central spectral solar H I Lyman alpha irradiance and the line irradiance measured by SUMER/SOHO during the cycle 23. Icarus 178, 429–433 (2005)

    Article  ADS  Google Scholar 

  • G.R. Gladstone et al., LAMP: The Lyman alpha mapping project on NASA’s lunar reconnaissance orbiter mission. Space Sci. Rev. 150, 161–181 (2010)

    Article  ADS  Google Scholar 

  • G.R. Gladstone et al., Far-ultraviolet reflectance properties of the Moon’s permanently shadowed regions. J. Geophys. Res. 117, E00H04 (2011). doi:10.1029/2011JE003913

    Google Scholar 

  • D.T. Hall, Ultraviolet resonance radiation and the structure of the heliosphere Dissertation, University of Arizona, 1992

    Google Scholar 

  • D. Hoffleit, W.H. Warren Jr., The Bright Star Catalogue, 5th Revised edn. (National Space Science Data Center/Astronomical Data Center, 1991)

    Google Scholar 

  • V.V. Izmodenov et al., Distribution of interstellar hydrogen atoms in the heliosphere and backscattered solar Lyman-α. In: Cross-Calibration of Far UV Spectra of Solar System Objects and the Heliosphere, ed. by E. Quémerais, M. Snow, R.M. Bonnet. ISSI Scientific Report Series, SR-013 (2013)

    Google Scholar 

  • J.H. King, N.E. Papitashvili, Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J. Geophys. Res. 110, A02104 (2005). doi:10.1029/2004JA010649

    Article  ADS  Google Scholar 

  • R. Lallement et al., Deflection of the interstellar neutral hydrogen flow across the heliospheric interface. Science 307, 1447–1449 (2005)

    Article  ADS  Google Scholar 

  • W.E. McClintock, M.R. Lankton, The mercury atmospheric and surface composition spectrometer for the MESSENGER mission. Space Sci. Rev. 131, 481–521 (2007)

    Article  ADS  Google Scholar 

  • W.E. McClintock et al., MESSENGER observations of Mercury’s exosphere: detection of magnesium and distribution of constituents. Science 324, 610–613 (2009)

    ADS  Google Scholar 

  • D.J. McComas et al., Measurements of variations in the solar wind-interstellar hydrogen charge exchange rate. Geophys. Res. Lett. 26, 2701–2704 (1999)

    Article  ADS  Google Scholar 

  • W.R. Pryor et al., The Galileo and Pioneer Venus ultraviolet spectrometer experiments: solar Lyman-alpha latitude variation at solar maximum from interplanetary Lyman-alpha observations. Astrophys. J. 394, 363–377 (1992)

    Article  ADS  Google Scholar 

  • W.R. Pryor, S.J. Lasica, A.I.F. Stewart, D.T. Hall, S. Lineaweaver, W.B. Colwell, J.M. Ajello, O.R. White, W.K. Tobiska, Interplanetary Lyman alpha observations from Pioneer Venus over a solar cycle from 1978 to 1992. J. Geophys. Res. 103, 26833–26849 (1998a)

    Article  ADS  Google Scholar 

  • W.R. Pryor, M. Witte, J.M. Ajello, Interplanetary Lyman alpha remote sensing with the Ulysses interstellar neutral gas experiment. J. Geophys. Res. 103, 26813–26831 (1998b)

    Article  ADS  Google Scholar 

  • W.R. Pryor, J.M. Ajello, D.J. McComas, M. Witte, W.K. Tobiska, Hydrogen atom lifetimes in the three-dimensional heliosphere over the solar cycle. J. Geophys. Res. 108, A108034 (2003). doi:10.1029/2003JA009878

    Article  ADS  Google Scholar 

  • W.R. Pryor et al., Radiation transport of heliospheric Lyman-alpha from combined Cassini and Voyager data sets. Astron. Astrophys. 491, 21–28 (2008)

    Article  ADS  Google Scholar 

  • E. Quémerais et al., Interplanetary hydrogen absolute ionization rates: retrieving the solar wind mass flux latitude and cycle dependence with SWAN/SOHO maps. J. Geophys. Res. 111, A09114 (2006). doi:10.1029/2006JA011711

    Article  ADS  Google Scholar 

  • M. Snow et al., A new catalog of ultraviolet stellar spectra for calibration. In: Cross-Calibration of Far UV Spectra of Solar System Objects and the Heliosphere, ed. by E. Quémerais, M. Snow, R.M. Bonnet. ISSI Scientific Report Series, SR-013 (2013)

    Google Scholar 

  • T.R. Summanen, R. Lallement, E. Quémerais, Solar wind proton flux latitudinal variations: comparisons between Ulysses in situ data and indirect measurements from interstellar Lyman alpha mapping. J. Geophys. Res. 102, 7051–7062 (1997)

    Article  ADS  Google Scholar 

  • T.R. Summanen et al., Interplanetary Lyman alpha observations of SWAN during the rising phase of the 23rd solar cycle. Adv. Space Res. 29, 457–462 (2002)

    Article  ADS  Google Scholar 

  • G.E. Thomas, The interstellar wind and its influence on the interplanetary environment. Ann. Rev. Earth Planet. Sci. 6, 173–204 (1978)

    Article  ADS  Google Scholar 

  • W.K. Tobiska et al., The SOLAR2000 empirical solar irradiance model and forecast tool. J. Atmos. Sol. Terr. Phys. 62, 1233–1250 (2000)

    Article  ADS  Google Scholar 

  • N. Witt, J.M. Ajello, P.W. Blum, Solar wind latitudinal variations deduced from Mariner 10 interplanetary H (1216 A) observations. Astron. Astrophys. 73, 272–281 (1979)

    ADS  Google Scholar 

  • M. Witte, Kinetic parameters of interstellar neutral helium. review of results obtained during one solar cycle with the Ulysses/GAS-instrument. Astron. Astrophys. 426, 835–844 (2004)

    Google Scholar 

  • T.N. Woods, W.K. Tobiska, G.J. Rottman, J.R. Worden, Improved solar Lyman alpha irradiance modeling from 1947 through 1999 based on UARS observations. J. Geophys. Res. 105, 27195–27215 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pryor, W.R. et al. (2013). Lyman-α Models for LRO LAMP from MESSENGER MASCS and SOHO SWAN Data. In: Quémerais, E., Snow, M., Bonnet, RM. (eds) Cross-Calibration of Far UV Spectra of Solar System Objects and the Heliosphere. ISSI Scientific Report Series, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6384-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6384-9_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6383-2

  • Online ISBN: 978-1-4614-6384-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics