Skip to main content

Distribution of Interstellar Hydrogen Atoms in the Heliosphere and Backscattered Solar Lyman-α

  • Chapter
  • First Online:

Part of the book series: ISSI Scientific Report Series ((ISSI,volume 13))

Abstract

We review the modern concepts of penetration of interstellar atoms of hydrogen into the heliosphere up to 1 AU. Before entering into the heliosphere the atoms penetrate through the region of the solar wind (SW) interaction with the local interstellar medium (LISM). In the interaction region the atoms can exchange charge with both solar wind and interstellar protons disturbed in the SW/LISM interaction region. Charge exchange results in a disturbance of the pristine interstellar atom flow in the interaction region, and, therefore, the parameters of interstellar gas inside the heliosphere are different from their interstellar values. This makes it more difficult to determine local interstellar parameters from measurements of the interstellar atoms inside the heliosphere, but, on the other side, opens possibilities to study the SW/LISM interaction region remotely. This paper overviews the main physical phenomena and modern models of the SW/LISM interaction and presents a state-of-art 3D kinetic model of the interstellar hydrogen gas inside the heliosphere. The distributions of the gas parameters are compared with the distributions obtained in the context of the classical hot model. Quantitative and qualitative differences are discussed. The state-of-art model is employed to calculate spectra of the backscattered Lyman-\(\alpha \) radiation as they would be measured at 1 AU and the zero, first and second moments of the spectra. It is shown that the SW/LISM interaction imprints in the spatial and velocity distribution of the interstellar atoms are revealed in the intensities, line-shifts, and line-widths of the distribution functions. A qualitative comparison of the model results with SOHO/SWAN data are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • J.M. Ajello, A.I. Stewart, G.E. Thomas, A. Graps, Solar cycle study of interplanetary Lyman-alpha variations: Pioneer Venus Orbiter sky background results. Astrophys. J. 317, 964–986 (1987)

    ADS  Google Scholar 

  • D.B. Aleksashov, V. Baranov, E. Barsky, A. Myasnikov, An axisymmetric magnetohydrodynamic model for the interaction of the solar wind with the local interstellar medium. Astron. Lett. 26, 743–749 (2000)

    ADS  Google Scholar 

  • I.I. Alekseev, A.P. Kropotkin, Passage of energetic particles through a magnetohydrodynamic discontinuity surface. Geomagn. Aeron. 10, 755 (1971)

    ADS  Google Scholar 

  • D.B. Alexashov, V.V. Izmodenov, M. Opher, Effects of the helisopheric and interstellar magnetic field on the heliospheric interface. 37th COSPAR Scientific Assembly D13-0015-08, P025-TueWed (poster) (2008)

    Google Scholar 

  • W.I. Axford, The interaction of the solar wind with the interstellar medium. In Solar wind, ed. by C.P. Sonett, P.J. Coleman, J.M. Wilcox. (Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington), p. 609 format? (1972)

    Google Scholar 

  • W.I. Axford, A.J. Dessler, B. Gottlieb, Termination of solar wind and solar magnetic field. Astrophys. J. 137, 1268–1278 (1963)

    ADS  Google Scholar 

  • V.B. Baranov, Gasdynamics of the solar wind interaction with the interstellar medium. Space Sci. Rev. 52, 89–120 (1990)

    ADS  Google Scholar 

  • V.B. Baranov, The heliosheath as a special case of stellarsheaths and the hydrogen wall as a signature of the heliosheath. Planet. Space Sci. 50, 535–539 (2002)

    ADS  Google Scholar 

  • V.B. Baranov, M.K. Ermakov, M.G. Lebedev, A three-component model of solar wind-interstellar medium interaction: some numerical results. Sov. Astron. Lett. 7, 206–209 (1981)

    ADS  Google Scholar 

  • V.B. Baranov, V.V. Izmodenov, Y.G. Malama, On the distribution function of H atoms in the problem of the solar wind interaction with the local interstellar medium. J. Geophys. Res. 103, 9575–9586 (1998)

    ADS  Google Scholar 

  • V.B. Baranov, K.V. Krasnobaev, A.G. Kulikovksy, Sov. Phys. Dokl. 15, 791 (1971)

    ADS  Google Scholar 

  • V.B. Baranov, M.G. Lebedev, Y.G. Malama, The influence of the interface between heliosphere and the local interstellar medium on the penetration of the H-atoms to the solar system. Astrophys. J. 375, 347–351 (1991)

    ADS  Google Scholar 

  • V.B. Baranov, Y.G. Malama, Model of the solar wind interaction with the local interstellar medium: numerical solution of self-consistent problem. J. Geophys. Res. 98, 15157–15163 (1993)

    ADS  Google Scholar 

  • V.B. Baranov, Y.G. Malama, Axisymmetric self-consistent model of the solar wind interaction with the LISM: basic results and possible ways of development. Space Sci. Rev. 78, 305–316 (1996)

    ADS  Google Scholar 

  • V.B. Baranov, N.A. Zaitsev, On the problem of the solar wind interaction with magnetized interstellar plasma. Astron. Astrophys. 304, 631–637 (1995)

    ADS  Google Scholar 

  • C.A. Barth, Mariner 6 measurements of the Lyman α sky background. Astrophys. J.Lett. 161, L181–L184 (1970)

    ADS  Google Scholar 

  • J.-L. Bertaux, J.E. Blamont, Evidence for a source of an extraterrestrial hydrogen Lyman α emission: the interstellar wind. Astron. Astrophys. 11, 200 (1971)

    ADS  Google Scholar 

  • J.-L. Bertaux, R. Lallement, Analysis of interplanetary Lyman α line profile with a hydrogen absorption cell: theory of the Doppler angular spectral scanning method. Astron. Astrophys. 140, 230–242 (1984)

    ADS  Google Scholar 

  • J.-L. Bertaux, A. Ammar, J.E. Blamont, OGO-5 determination of the local interstellar wind parameters. Space Res. 12, 1559–1567 (1972)

    Google Scholar 

  • J.-L. Bertaux, J.E. Blamont, N. Tabarie, W.G. Kurt, M.C. Bourgin, A.S. Smirnov, N.N. Dementeva, Interstellar medium in the vicinity of the sun: a temperature measurement obtained with the Mars-7 interplanetary probe. Astron. Astrophys. 46, 19–29 (1976)

    ADS  Google Scholar 

  • J.L. Bertaux, J.E. Blamont, E.N. Mironova, V.G. Kurt, M.C. Bourgin, Temperature measurement of interplanetary interstellar hydrogen. Nature 270, 156–158 (1977)

    ADS  Google Scholar 

  • J.-L. Bertaux, E. Quémerais, R. Lallement, E. Kyrölä, W. Schmidt, T. Summanen, J.P. Goutail, M. Berthé, J. Costa, T. Holzer, First results from the SWAN Lyman α solar wind mapper on SOHO. Sol. Phys. 175, 737–770 (1997)

    ADS  Google Scholar 

  • J.-L. Bertaux, E. Kyrölä, E. Quémerais, R. Lallement, W. Schmidt, T. Summanen, J. Costa, T. Makinen, SWAN observations of the solar wind latitude distribution and its evolution since launch. Space Sci. Rev. 87, 129–132 (1999)

    ADS  Google Scholar 

  • P.W. Blum, H.-J. Fahr, Interaction between interstellar hydrogen and the solar wind. Astron. Astrophys. 4, 280–290 (1970)

    ADS  Google Scholar 

  • P.W. Blum, J. Pfleiderer, C. Wulf-Mathies, Neutral gases of interstellar origin in interplanetary space. Planet. Space Sci. 23, 93–105 (1975)

    ADS  Google Scholar 

  • P. Blum, P. Gangopadhyay, H.S. Ogawa, D.L. Judge, Solar-driven neutral density waves. Astron. Astrophys. 272, 549–554 (1993)

    ADS  Google Scholar 

  • J.C. Brandt, J.W. Chamberlain, Interplanetary gas. I. hydrogen radiation in the night sky. Astrophys. J. 130, 670–682 (1959)

    Google Scholar 

  • P.C. Brandt, E.C. Roelof, P. Wurz, S. Barabash, D. Bazell, R. DeMajistre, T. Sotirelis, R. Decker, Energetic neutral atom (ENA) imaging of the heliosheath: spectral characteristics and implications for shock acceleration from observations by the neutral particle detector (NPD) on board Venus Express (VEX). American Geophysical Union, Spring Meeting, abstract SH24A-01 (2009)

    Google Scholar 

  • L.F. Burlaga, N.F. Ness, M.H. Acuña, Crossing the termination shock into the heliosheath: magnetic fields. Science 309, 2027–2029 (2005). doi:10.1126/science.1117542

    ADS  Google Scholar 

  • M. Bzowski, Response of the groove in heliospheric Lyman-alpha glow to latitude-dependent ionization rate. Astron. Astrophys. 408, 1155–1164 (2003)

    ADS  Google Scholar 

  • M. Bzowski, Survival probability and energy modification of hydrogen energetic neutral atoms on their way from the termination shock to Earth orbit. Astron. Astrophys. 488, 1057–1068 (2008)

    ADS  Google Scholar 

  • M. Bzowski, D. Ruciński, Solar cycle modulation of the interstellar hydrogen density distribution in the heliosphere. Space Sci. Rev. 72, 467–470 (1995)

    ADS  Google Scholar 

  • M. Bzowski, H.-J. Fahr, D. Ruciński, H. Scherer, Variation of bulk velocity and temperature anisotropy of neutral heliospheric hydrogen during the solar cycle. Astron. Astrophys. 326, 396–411 (1997)

    ADS  Google Scholar 

  • M. Bzowski, T. Summanen, D. Ruciński, E. Kyrölä, Response of interplanetary glow to global variations of hydrogen ionization rate and solar Lyman α flux. J. Geophys. Res. 107, CiteID 1101 (2002). doi:10.1029/2001JA000141

    Google Scholar 

  • M. Bzowski, T. Makinen, E. Kyrölä et al., Latitudinal structure and north-south asymmetry of the solar wind from Lyman-alpha remote sensing by SWAN. Astron. Astrophys. 408, 1165–1177 (2003)

    ADS  Google Scholar 

  • M. Bzowski, E. Möbius, S. Tarnopolski et al., Density of neutral interstellar hydrogen at the termination shock from Ulysses pickup ion observations. Astron. Astrophys. 491, 7–19 (2008)

    ADS  Google Scholar 

  • S.V. Chalov, H.-J. Fahr, Energetic particles from the outer heliosphere appearing as a secondary pick-up ion component. Astron. Astrophys. 401, L1–L4 (2003)

    ADS  Google Scholar 

  • S.V. Chalov, D.B. Alexashov, D. McComas et al., Scatter-free pickup ions beyond the heliopause as a model for the interstellar boundary explorer ribbon. Astrophys. J.Lett. 716, L99–L102 (2010)

    ADS  Google Scholar 

  • J. Costa, R. Lallement, E. Quémerais et al., Heliospheric interstellar H temperature from SOHO/SWAN H cell data. Astron. Astrophys. 349, 660–672 (1999)

    ADS  Google Scholar 

  • J.M.A. Danby, G.L. Camm, Stat. dynam. accretion Monthly Not. Royal Astron. Soc. 117, 50–71 (1957)

    Google Scholar 

  • L. Davis Jr., Interplanetary magnetic fields and cosmic rays. Phys. Rev. 100, 1440–1444 (1955). doi:10.1103/PhysRev.100.1440

    ADS  Google Scholar 

  • R.B. Decker, S.M. Krimigis, E.C. Roelof et al., Voyager 1 in the foreshock, termination shock, and heliosheath. Science 309, 2020–2024 (2005)

    ADS  Google Scholar 

  • H.-J. Fahr, On the influence of the neutral interstellar matter on the upper atmosphere. Astrophys. Space Sci. 2, 474–495 (1968a)

    ADS  Google Scholar 

  • H.-J. Fahr, Neutral corpuscular energy flux by charge transfer collisions in the vicinity of the Sun. Astrophys. Space Sci. 2, 496–503 (1968b)

    ADS  Google Scholar 

  • H.-J. Fahr, The interplanetary hydrogen cone and its solar cycle variations. Astron. Astrophys. 14, 263–274 (1971)

    ADS  Google Scholar 

  • H.-J. Fahr, The extraterrestrial UV-background and the nearby interstellar medium. Space Sci. Rev. 15, 483–540 (1974)

    ADS  Google Scholar 

  • H.-J. Fahr, Change of interstellar gas parameters in stellar-wind-dominated astrospheres: the solar case. Astron. Astrophys. 66, 103–117 (1978)

    ADS  Google Scholar 

  • W.C. Feldman, J.J. Lange, F. Scherb, Interstellar helium in interplanetary space. In Solar Wind, ed. by C.P. Sonett, P.J. Coleman, J.M. Wilcox. (Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington, 1972), p. 668

    Google Scholar 

  • H.O. Funsten, F. Allegrini, G.B. Crew et al., Structures and spectral variations of the outer heliosphere in IBEX energetic neutral atom maps. Science 326, 964 (2009)

    ADS  Google Scholar 

  • S.A. Fuselier, F. Allegrini, H.O. Funsten et al., Width and variation of the ENA flux ribbon observed by the interstellar boundary explorer. Science 326, 962 (2009)

    ADS  Google Scholar 

  • K. Gringauz, V. Bezrukih, V. Ozerov, R. Ribchinsky, A study of the interplanetary ionized gas, high-energy electrons and corpuscular radiation from the Sun by means of the three-electrode trap for charged particles on the second soviet cosmic rocket. Sov. Phys. Doklady 5, 361 (1960)

    ADS  Google Scholar 

  • M. Gruntman, V.V. Izmodenov, Mass transport in the heliosphere by energetic neutral atoms. J. Geophys. Res. 109, A12108 (2004). doi:10.1029/2004JA010727

    ADS  Google Scholar 

  • M. Gruntman, E.C. Roelof, D.G. Mitchell, H.-J. Fahr, H.O. Funsten, D.J. McComas, Energetic neutral atom imaging of the heliospheric boundary region. J. Geophys. Res. 106, 15767–15782 (2001)

    ADS  Google Scholar 

  • J. Heerikhuisen, N.V. Pogorelov, An estimate of the nearby interstellar magnetic field using neutral atoms. Astrophys. J. 738, 29 (2011). doi:10.1088/0004-637X/738/1/29

    ADS  Google Scholar 

  • M. Hilchenbach, K.C. Hsieh, D. Hovestadt et al., Detection of 55–80 keV hydrogen atoms of heliospheric origin by CELIAS/HSTOF on SOHO. Astrophys. J. 503, 916–922 (1998)

    ADS  Google Scholar 

  • M. Hilchenbach, K.C. Hsieh, D. Hovestadt, R. Kallenbach, A. Czechowski, E. Möbius, P. Bochsler, Energetic neutral hydrogen of heliospheric origin observed with SOHO/CELIAS at 1 AU. In The Outer Heliosphere: The Next Frontiers, ed. by K. Scherer, H. Fichtner, H.J. Fahr, E. Marsch. (Pergamon, Elmsford, 2000), pp. 273–276

    Google Scholar 

  • A.J. Hundhausen, Interplanetary neutral hydrogen and the radius of the heliosphere. Planet. Space Sci. 16, 783–793 (1968)

    ADS  Google Scholar 

  • P.A. Isenberg, Evolution of interstellar pickup ions in the solar wind. J. Geophys. Res. 92, 1067–1073 (1987)

    ADS  Google Scholar 

  • V.V. Izmodenov, Physics and gasdynamics of the heliospheric interface. Astrophys. Space Sci. 274, 55–69 (2000)

    ADS  Google Scholar 

  • V.V. Izmodenov, Velocity distribution of interstellar H atoms in the heliospheric interface. Space Sci. Rev. 97, 385–388 (2001)

    ADS  Google Scholar 

  • V.V. Izmodenov, Early concepts of the heliospheric interface: H atoms. In The Physics of the Heliospheric Boundaries, ed. by V.V. Izmodenov, R. Kallenbach. ISSI Scientific Report No. 5 (ESA-ESTEC, Paris, 2006), pp. 45–65

    Google Scholar 

  • V.V. Izmodenov, Local interstellar parameters as they are inferred from analysis of observations inside the heliosphere. Space Sci. Rev. 143, 139–150 (2009)

    ADS  Google Scholar 

  • V.V. Izmodenov, D. Alexashov, A model for the tail region of the heliospheric interface. Astronomy Lett. 29, 58–63 (2003)

    ADS  Google Scholar 

  • V.V. Izmodenov, D. Alexashov, Kinetic vs multi-fluid models of H atoms in the heliospheric interface. In Solar Wind 11 / SOHO 16 Connecting Sun and Heliosphere conference, ed. by B. Fleck, T.H. Zurbuchen, H. Lacoste. (ESA SP-592, 2005), p. 355

    Google Scholar 

  • V.V. Izmodenov, D. Alexashov, Multi-component 3d modeling of the heliospheric interface: effects of interstellar magnetic field. In Physics of the inner heliosheath: Voyager observations, theory, and future prospects. 5th annual IGPP international astrophysics conference. AIP Conference Proceedings, vol. 858 (2006), pp. 14–19

    Google Scholar 

  • V.V. Izmodenov, Y.G. Malama, A.P. Kalinin et al., Hot neutral H in the heliosphere: elastic H-H, H-p collisions. Astrophys. Space Sci. 274, 71–76 (2000)

    ADS  Google Scholar 

  • V.V. Izmodenov, M. Gruntman, Y.G. Malama, Interstellar hydrogen atom distribution function in the outer heliosphere. J. Geophys. Res. 106, 10681 (2001)

    ADS  Google Scholar 

  • V.V. Izmodenov, G. Gloeckler, Y.G. Malama, When will Voyager 1 and 2 cross the termination shock? Geophys. Res. Lett. 30, 3–1 (2003). doi:10.1029/2002GL016127

    Google Scholar 

  • V.V. Izmodenov, D. Alexashov, A. Myasnikov, Direction of the interstellar H atom inflow in the heliosphere: role of the interstellar magnetic field. Astron. Astrophys. 437, L35–L38 (2005)

    ADS  Google Scholar 

  • V.V. Izmodenov, Y.G. Malama, M.S. Ruderman, Modeling of the outer heliosphere with the realistic solar cycle. Adv. Space Res. 41, 318–324 (2008)

    ADS  Google Scholar 

  • V.V. Izmodenov, Y.G. Malama, M.S. Ruderman et al., Kinetic-gasdynamic modeling of the heliospheric interface. Space Sci. Rev. 146, 329–351 (2009)

    ADS  Google Scholar 

  • J.A. Joselyn, T.E. Holzer, The effect of asymmetric solar wind on the Lyman α sky background. J. Geophys. Res. 80, 903–907 (1975)

    ADS  Google Scholar 

  • O.A. Katushkina, V.V. Izmodenov, Effect of the heliospheric interface on the distribution of interstellar hydrogen atom inside the heliosphere. Astronomy Lett. 36, 297–300 (2010)

    ADS  Google Scholar 

  • O.A. Katushkina, V.V. Izmodenov, The influence of effects on the heliospheric interface on parameters of backscattered solar Lα radiation measured at the Earth’s orbit. Cosmic Res. 50, 141–151 (2012)

    ADS  Google Scholar 

  • S.M. Krimigis, D.G. Mitchell, E.C. Roelof, P.C. Brandt, Energetic neutral atoms (ENA) from the termination shock/heliosheath? the view from 10AU. Paper presented at Voyagers in the heliosheath: observations, models, and plasmas physics Kauai, Hawaii, 9–14 Jan 2009

    Google Scholar 

  • S.M. Krimigis, E.C. Roelof, R.B. Decker, M.E. Hill, Zero outward flow velocity for plasma in a heliosheath transition layer. Nature 474, 359–361 (2011)

    ADS  Google Scholar 

  • S. Kumar, A.L. Broadfoot, Evidence from Mariner 10 of solar wind flux depletion at high ecliptic latitudes. Astron. Astrophys. 69, L5–L8 (1978)

    ADS  Google Scholar 

  • S. Kumar, A.L. Broadfoot, Signatures of solar wind latitudinal structure in interplanetary Lyman α emissions: Mariner 10 observations. Astrophys. J. 228, 302–311 (1979)

    ADS  Google Scholar 

  • J.E. Kupperian, E.T. Byram, T.A. Chubb, H. Friedman, Far ultraviolet radiation in the night sky. Planet. Space Sci. 1, 3–6 (1959)

    ADS  Google Scholar 

  • V.G. Kurt, Measurement of scattered Lyman α radiation in the vicinity of the Earth and in interplanetary space. In Space Research: Transactions of the All-union Conference on Space Physics, ed. by G.A. Skuridin et al. NASA Technical Translation: NASA TT F-389, Science Publishing House, Moscow, 10–16 June 1965, p. 769 (Translation published by NASA, Washington DC, USA, May 1966)

    Google Scholar 

  • V.G. Kurt, Kosmicheskie Issledovania (in russian) 5(6), 769–775 (1967)

    Google Scholar 

  • V.G. Kurt, T.A. Germogenova, Scattering of solar Lyman α radiation by galactic hydrogen. Sov. Astron. 11, 278–282 (1967)

    ADS  Google Scholar 

  • V.G. Kurt, R.A. Syunyaev, Observations and interpretation of the ultraviolet radiation of the Galaxy. Sov. Astron. 11, 928–931 (1967)

    ADS  Google Scholar 

  • E. Kyrölä, T. Summanen, P. Raback, Solar cycle and interplanetary hydrogen. Astron. Astrophys. 288, 299–314 (1994)

    ADS  Google Scholar 

  • R. Lallement, The interaction of the heliosphere with interstellar medium. In The Century of Space Science, ed. by A.M. Bleeker, J. Geiss, M.C.E. Huber. (Kluwer, New York, 2001), pp. 1191–1216

    Google Scholar 

  • R. Lallement, J.-L. Bertaux, Deceleration of interstellar hydrogen at heliopause crossing suggested by Lyman-alpha spectral observations. Astron. Astrophys. 231, L3–L6 (1990)

    ADS  Google Scholar 

  • R. Lallement, A.I.F.S. Stewart, Out-of-ecliptic Lyman α observations with Pioneer-Venus: solar wind anisotropy degree in 1986. Astron. Astrophys. 227, 600–608 (1990)

    ADS  Google Scholar 

  • R. Lallement, J.-L. Bertaux, V.G. Kurt, E.N. Mironova, Observed perturbations of the velocity distribution of interstellar H atoms in the solar system with Prognoz Lyman α measurements. Astron. Astrophys. 140, 243–250 (1984)

    ADS  Google Scholar 

  • R. Lallement, J.-L. Bertaux, F. Dalaudier, Interplanetary Lyman α spectral profiles and intensities for both repulsive and attractive solar force fields predicted absorption pattern by a hydrogen cell. Astron. Astrophys. 150, 21–32 (1985a)

    ADS  Google Scholar 

  • R. Lallement, J.-L. Bertaux, V.G. Kurt, Solar wind decrease at high heliographic latitudes detected from Prognoz interplanetary Lyman α mapping. J. Geophys. Res. 90, 1413–1423 (1985b)

    ADS  Google Scholar 

  • R. Lallement, E. Quémerais, J.-L. Bertaux, S. Ferron, D. Koutroumpa, R. Pellinen, Deflection of the interstellar neutral hydrogen flow across the heliospheric interface. Science 307, 1447–1449 (2005)

    ADS  Google Scholar 

  • R. Lallement, E. Queḿerais, D. Koutroumpa, J.-L. Bertaux, S. Ferron, W. Schmidt, P. Lamy, The interstellar H flow: updated analysis of SOHO/SWAN Data. AIP Conf. Proc. 1216, 555–558 (2010)

    Google Scholar 

  • M. Lee, H. Kucharek, E. Möbius et al., An analytical model of interstellar gas in the heliosphere tailored to interstellar boundary explorer observations. Astrophys. J.Suppl. 198, article id 10 (2012)

    Google Scholar 

  • P. Lemaire, C. Emerich, W. Curdt et al., Solar H I Lyman alpha full disk profile obtained with the SUMER/SOHO spectrometer. Astron. Astrophys. 334, 1095–1098 (1998)

    ADS  Google Scholar 

  • B.G. Lindsay, R.F. Stebbings, Charge transfer cross sections for energetic neutral atom data analysis. J. Geophys. Res. 110, A12213 (2005)

    ADS  Google Scholar 

  • J. Linsky, B. Wood, The alpha Centauri line of sight: D/H ratio, physical properties of local insterstellar gas, and measurement of heated hydrogen (the “hydrogen wall”) near the heliopause. Astrophys. J. 463, 254 (1996)

    ADS  Google Scholar 

  • L.J. Maher, B.A. Tinsley, Atomic hydrogen escape rate due to charge exchange with hot plasmaspheric ions. J. Geophys. Res. 82, 689–695 (1977)

    ADS  Google Scholar 

  • Y.G. Malama, Monte-Carlo simulation of neutral atoms trajectories in the solar system. Astrophys. Space Sci. 176, 21–46 (1991)

    ADS  Google Scholar 

  • Y.G. Malama, V.V. Izmodenov, S.V. Chalov, Modeling of the heliospheric interface: multi-component nature of the heliospheric plasma. Astron. Astrophys. 445, 693–701 (2006)

    ADS  Google Scholar 

  • D.J. McComas, R.W. Ebert, H.A. Elliott et al., Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 35, L18103 (2008)

    ADS  Google Scholar 

  • D.J. McComas, F. Allegrini, P. Bochsler et al., Global observations of the interstellar interaction from the interstellar boundary explorer (IBEX). Science v326, 959 (2009)

    Google Scholar 

  • R.R. Meier, Some optical and kinetic properties of the nearby interstellar gas. Astron. Astrophys. 55, 211–219 (1977)

    ADS  Google Scholar 

  • D.C. Morton, J.D. Purcell, Observations of the extreme ultraviolet radiation in the night sky using an atomic hydrogen filter. Planet. Space Sci. 9, 455–458 (1962)

    ADS  Google Scholar 

  • H.-R. Mueller, V. Florinski, J. Heerikhuisen, V.V. Izmodenov, K. Scherer, D. Alexashov, H.-J. Fahr, Comparing various multi-component global heliospheric models. Astron. Astrophys. 491, 43–51 (2008)

    ADS  Google Scholar 

  • M. Neugebauer, C.W. Snyder, Solar plasma experiment. Science 138, 1095 (1962)

    ADS  Google Scholar 

  • M. Opher, F.A. Bibi, G. Toth, J.D. Richardson, V.V. Izmodenov, T.I. Gombosi, A strong, highly-tilted interstellar magnetic field near the Solar System. Nature 462, 1036–1038 (2009)

    ADS  Google Scholar 

  • E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J.Lett. 128, 664 (1958)

    ADS  Google Scholar 

  • E.N. Parker, The stellar-wind regions. Astrophys. J.Lett. 134, 20–27 (1961)

    ADS  Google Scholar 

  • T.N.L. Patterson, F.S. Johnson, W.B. Hanson, The distribution of interplanetary hydrogen. Planet. Space Sci. 11, 767–778 (1963)

    ADS  Google Scholar 

  • W.R. Pryor, J.M. Ajello, C.A. Barth et al., The Galileo and Pioneer Venus ultraviolet spectrometer experiments: solar Lyman-alpha latitude variation at solar maximum from interplanetary Lyman-alpha observations. Astrophys. J. 394, 363–377 (1992)

    ADS  Google Scholar 

  • W.R. Pryor, J.L. Scott, I.F. Stewart et al., Interplanetary Lyman α observations from Pioneer Venus over a solar cycle from 1978 to 1992. J. Geophys. Res. 103, 26833–26849 (1998)

    ADS  Google Scholar 

  • W.R. Pryor, J.M. Ajello, D.J. McComas, M. Witte, W.K. Tobiska, Hydrogen atom lifetimes in the three-dimensional heliosphere over the solar cycle. J. Geophys. Res. 108, 8034 (2003). doi:10.1029/2003JA009878

    Google Scholar 

  • E. Quémerais, Angle dependent partial frequency redistribution in the interplanetary medium at Lyman α. Astron. Astrophys. 358, 353–367 (2000)

    ADS  Google Scholar 

  • E. Quémerais, V.V. Izmodenov, Effects of the heliospheric interface on the interplanetary Lyman α glow seen at 1 AU from the Sun. Astron. Astrophys. 396, 269–281 (2002)

    ADS  Google Scholar 

  • E. Quémerais, R. Lallement, J.-L. Bertaux et al., Interplanetary Lyman α line profiles: variations with solar activity cycle. Astron. Astrophys. 445, 1135–1142 (2006)

    ADS  Google Scholar 

  • E. Quémerais, V.V. Izmodenov, D. Koutroumpa, Y.G. Malama, Time dependent model of the interplanetary Lyman α glow: applications to the SWAN data. Astron. Astrophys. 448, 351–359 (2008)

    ADS  Google Scholar 

  • D. Ruciński, M. Bzowski, Modulation of interplanetary hydrogen density distribution during the solar cycle. Astron. Astrophys. 296, 248–263 (1995)

    ADS  Google Scholar 

  • N.A. Schwadron, M. Bzowski, G.B. Crew et al., Comparison of interstellar boundary explorer observations with 3D global heliospheric models. Science 326, 966 (2009)

    ADS  Google Scholar 

  • H. Sherer, M. Bzowski, H.-J. Fahr, D. Ruciński, Improved analysis of interplanetary HST Ly-a spectra using time-dependent modelings. Astron. Astrophys. 342, 601 (1999)

    ADS  Google Scholar 

  • I.S. Shklovsky, On hydrogen emission in the night glow. Planet. Space Sci. 1, 63–65 (1959)

    ADS  Google Scholar 

  • E.C. Stone, A.C. Cummings, F.B. McDonald et al., Science 309, 2017–2020 (2005)

    ADS  Google Scholar 

  • B. Strömgren, The physical state of interstellar hydrogen. Astrophys. J. 89, 526–547 (1939)

    ADS  MATH  Google Scholar 

  • T. Summanen, R. Lallement, J.-L. Bertaux, E. Kyrölä, Latitudinal distribution of solar wind as deduced from Lyman α measurements: an improved method. J. Geophys. Res. 98, 13215–13224 (1993)

    ADS  Google Scholar 

  • T. Summanen, The effect of the time and latitude-dependent solar ionisation rate on the measured Lyman α-intensity. Astron. Astrophys. 314, 663–671 (1996)

    ADS  Google Scholar 

  • T. Terasawa, Energy spectrum and pitch angle distribution of particles reflected by MHD shock waves fast mode. Planet. Space Sci. 27, 193–201 (1979)

    ADS  Google Scholar 

  • G.E. Thomas, Properties of nearby interstellar hydrogen deduced from Lyman α sky background measurements. In C.P. Sonett, P.J. Coleman, J.M. Wilcox (eds.), Solar Wind, Scientific and Technical Information Office, National Aeronautics and Space Administration., Washington, p. 661 (1972)

    Google Scholar 

  • G.E. Thomas, R.F. Krassa, OGO-5 measurements of the Lyman α sky background. Astron. Astrophys. 11, 218 (1971)

    ADS  Google Scholar 

  • M.K. Wallis, Local interstellar medium. Nature 254, 202–203 (1975)

    ADS  Google Scholar 

  • B.Y. Welsh, Warm and hot gas in the local ISM. Space Sci. Rev. 143, 241–252 (2009)

    ADS  Google Scholar 

  • L. Williams, D.T. Hall, H.L. Pauls, G.P. Zank, The heliospheric hydrogen distribution: a multifluid model. Astrophys. J. 476, 366–384 (1997)

    ADS  Google Scholar 

  • N. Witt, P.W. Blum, J.M. Ajello, Solar wind latitudinal variations deduced from Mariner 10 interplanetary H 1216 A observations. Astron. Astrophys. 73, 272–281 (1979)

    ADS  Google Scholar 

  • N. Witt, P.W. Blum, J.M. Ajello, Polar solar wind and interstellar wind properties from interplanetary Lyman-alpha radiation measurements. Astron. Astrophys. 95, 80–85 (1981)

    ADS  Google Scholar 

  • F.M. Wu, D.L. Judge, Temperature and flow velocity of the interplanetary gases along solar radii. Astrophys. J. 231, 594–605 (1979)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Izmodenov, V.V., Katushkina, O.A., Quémerais, E., Bzowski, M. (2013). Distribution of Interstellar Hydrogen Atoms in the Heliosphere and Backscattered Solar Lyman-α. In: Quémerais, E., Snow, M., Bonnet, RM. (eds) Cross-Calibration of Far UV Spectra of Solar System Objects and the Heliosphere. ISSI Scientific Report Series, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6384-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6384-9_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6383-2

  • Online ISBN: 978-1-4614-6384-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics