Compressive Acquisition

  • Vishal M. Patel
  • Rama Chellappa
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

Many imaging modalities have been proposed that make use of the theory of compressive sensing. In this chapter, we present several sensors designed using CS theory. In particular, we focus on the Single Pixel Camera (SPC) [54], [149], Magnetic Resonance Imaging (MRI) [79], [80], [108], Synthetic Aperture Radar (SAR) imaging [103], passive millimeter wave imaging [104] and compressive light transport sensing [110]. See [153] and [55] for excellent tutorials on the applications of compressive sensing in the context of optical imaging as well as analog-to-information conversion.

Keywords

Migration Microwave Attenuation Radar Explosive 

References

  1. 1.
  2. 2.
    M. Aharon, M. Elad, and A. M. Bruckstein. The k-svd: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process., 54(11):4311–4322, 2006.Google Scholar
  3. 3.
    F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematics Programming, 95(1):3–51, 2003.Google Scholar
  4. 4.
    R. Appleby and R. N. Anderton. Millimeter-wave and submillimeter-wave imaging for security and surveillance. Proceedings of the IEEE, 95(8):1683 –1690, Aug. 2007.Google Scholar
  5. 5.
    S. D. Babacan, M. Luessi, L. Spinoulas, and A. K. Katsaggelos. Compressive passive millimeter-wave imaging. In IEEE ICIP, 2011.Google Scholar
  6. 6.
    G. R. Baraniuk. Compressive sensing. IEEE Signal Processing Magazine, 24(4):118–121, July 2007.Google Scholar
  7. 7.
    R. Baraniuk. More is less: signal processing and the data deluge. Science, 331(6018):717–719, 2011.Google Scholar
  8. 8.
    E. van den Berg and M. P. Friedlander. Probing the Pareto frontier for basis pursuit solutions. Technical report, Department of Computer Science, University of British Columbia.Google Scholar
  9. 9.
    J. M. Bioucas-Dias and M. A. T. Figueiredo. A New TwIST: Two-Step Iterative Shrinkage/ Thresholding Algorithms for image restoration. IEEE Transactions on Image Processing, 16(12):2992–3004, Dec. 2007.Google Scholar
  10. 10.
    J. D. Blanchard, C. Cartis, J. Tanner, and A. Thompson. Phase transitions for greedy sparse approximation algorithms. Applied and Computational Harmonic Analysis, 30(2):188–203, 2011.Google Scholar
  11. 11.
    T. Blumensath and E. Davies. Iterative hard thresholding for compressed sensing. preprint.Google Scholar
  12. 12.
    T. Blumensath and E. Davies. Iterative thresholding for sparse approximations. The Journal of Fourier Analysis and Applications, 14(5):629–654, Dec. 2008.Google Scholar
  13. 13.
    T. Blumensath and M. E Davies. Signal recovery from partial information via orthogonal matching pursuit. IEEE Transactions on Signal Processing, 56(6):2370–2382, June 2008.Google Scholar
  14. 14.
    K. W. Bowyer and P. J. Flynn. The nd-iris-0405 iris image dataset. Notre Dame CVRL Technical Report.Google Scholar
  15. 15.
    S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, New York, NY, 2004.Google Scholar
  16. 16.
    Sara Bradburn, Wade Thomas Cathey, and Edward R. Dowski. Realizations of focus invariance in optical–digital systems with wave-front coding. Appl. Opt., 36(35):9157–9166, Dec. 1997.Google Scholar
  17. 17.
    Alfred M. Bruckstein, David L. Donoho, and Michael Elad. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev., 51(1):34–81, February 2009.Google Scholar
  18. 18.
    Christopher J.C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2:121–167, 1998.Google Scholar
  19. 19.
    E. Candes and J. Romberg. Practical signal recovery from random projections. Proceedings of the SPIE, 5674:76–86, 2005.Google Scholar
  20. 20.
    E. Candes and J. Romberg. Signal recovery from random projections. in Proc. of SPIE Computational Imaging III, 5674, 2005.Google Scholar
  21. 21.
    E. Candes and J. Romberg. Quantitatively robust uncertainty principles and optimally sparse decompositions. Foundations of Comput. Math., 6(2):227–254, April 2006.Google Scholar
  22. 22.
    E. Candes, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 59(8):1207–1223, August 2006.Google Scholar
  23. 23.
    E. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2):489–509, Feb. 2006.Google Scholar
  24. 24.
    E. Candes and T. Tao. Decoding by linear programing. IEEE Transactions on Information Theory, 51(12):4203–4215, Dec. 2005.Google Scholar
  25. 25.
    E. Candes and T. Tao. Near optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory, 52(12):5406–5425, Dec. 2006.Google Scholar
  26. 26.
    E. J. Candes. Compressive sampling. International Congress of Mathematics, Madrid, Spain, 3:1433–1452, 2006.Google Scholar
  27. 27.
    E. J. Candes, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal of ACM, 58(1):1–37, 2009.Google Scholar
  28. 28.
    E. J. Candes and T Tao. The Dantzig selector: statistical estimation when p is much larger than n. Annals of Statistics, 35(6):2313–2351, 2007.Google Scholar
  29. 29.
    E. J. Candes, M. Wakin, and S. Boyd. Enhancing sparsity by reweighted 1 minimization. J. Fourier Anal. Appl., 14:877–905, 2008.Google Scholar
  30. 30.
    W. G. Carrara, R. S. Goodman, and R. M. Majewski. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms. Artech House, Norwood, MA, 1995.Google Scholar
  31. 31.
    W. Thomas Cathey and Edward R. Dowski. New paradigm for imaging systems. Appl. Opt., 41(29):6080–6092, Oct. 2002.Google Scholar
  32. 32.
    M. Çetin and W. C. Karl. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization. IEEE Transactions on Image Processing, 10(4):623–631, Apr. 2001.Google Scholar
  33. 33.
    V. Cevher, A. Sankaranarayanan, M. Duarte, D. Reddy, R. Baraniuk, and R. Chellappa. Compressive sensing for background subtraction. ECCV, 2008.Google Scholar
  34. 34.
    A. B. Chan and N. Vasconcelos. Probabilistic kernels for the classification of auto-regressive visual processes. In IEEE Conf. on Computer Vision and Pattern Recognition, pages 846–851, 2005.Google Scholar
  35. 35.
    T. F. Chan, S. Esedoglu, F. Park, and M. H. Yip. Recent Developments in Total Variation Image Restoration. Springer Verlag, 2005.Google Scholar
  36. 36.
    Wai Lam Chan, Kriti Charan, Dharmpal Takhar, Kevin F. Kelly, Richard G. Baraniuk, and Daniel M. Mittleman. A single-pixel terahertz imaging system based on compressed sensing. Appl. Phys. Lett., 93(12):121105–3, 2008.Google Scholar
  37. 37.
    R. Chartrand. Exact reconstructions of sparse signals via nonconvex minimization. IEEE Signal Processing Letters, 14:707–710, 2007.Google Scholar
  38. 38.
    S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit. SIAM J. Sci. Comp., 20(1):33–61, 1998.Google Scholar
  39. 39.
    V. C. Chen and H. Ling. Time-Frequency Transforms for Radar Imaging and Signal Analysis. Artech House, Norwood, MA, 2002.Google Scholar
  40. 40.
    Y-C. Chen, V. M. Patel, P. J. Phillips, and R. Chellappa. Dictionary-based face recognition from video. In European Conference on Computer Vision, pages 1–14, 2012.Google Scholar
  41. 41.
    Yi Chen, N.M. Nasrabadi, and T.D. Tran. Hyperspectral image classification via kernel sparse representation. In IEEE International Conference on Image Processing, pages 1233 –1236, sept. 2011.Google Scholar
  42. 42.
    M. Cossalter, G. Valenzise, M. Tagliasacchi, and S. Tubaro. Joint compressive video coding and analysis. IEEE Transactions on Multimedia, 12(3):168–183, 2010.Google Scholar
  43. 43.
    Christy Fernandez Cull, David A. Wikner, Joseph N. Mait, Michael Mattheiss, and David J. Brady. Millimeter-wave compressive holography. Appl. Opt., 49(19):E67–E82, Jul 2010.Google Scholar
  44. 44.
    I. G. Cumming and F. H. Wong. Digital processing of synthetic aperture radar data. Artech House, Norwood, MA, 2005.Google Scholar
  45. 45.
    I. Daubechies, M. Defries, and C. De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics, 57:1413–1457, 2004.Google Scholar
  46. 46.
    J. Daugman. How iris recognition works. IEEE Transactions on Circuits and Systems for Video Technology, 14(1):21–30, Jan. 2004.Google Scholar
  47. 47.
    D. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–1306, Apr. 2006.Google Scholar
  48. 48.
    D. L. Donoho. High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension. Discrete and Comput. Geom., 35(4):617652, 2006.Google Scholar
  49. 49.
    D. L. Donoho, Y. Tsaig, I. Drori, and J-L. Starck. Sparse solution of underdetermined linear equations by Stagewise Orthogonal Matching Pursuit. IEEE Transactions on Information Theory, March 2006, preprint.Google Scholar
  50. 50.
    David L. Donoho and Michael Elad. Optimally sparse representation in general (non-orthogonal) dictionaries via l1 minimization. Proc. Natl Acad. Sci., 100:2197–2202, 2003.Google Scholar
  51. 51.
    D.L. Donoho and J. Tanner. Precise undersampling theorems. Proceedings of the IEEE, 98(6):913 –924, june 2010.Google Scholar
  52. 52.
    L. Donoho, D. and Y. Tsaig. Recent advances in sparsity-driven signal recovery. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 5:v713–v716, March 2005.Google Scholar
  53. 53.
    G. Doretto, A. Chiuso, Y.N. Wu, and S. Soatto. Dynamic textures. International Journal of Computer Vision, 51(2):91–109, 2003.Google Scholar
  54. 54.
    M.F. Duarte, M.A. Davenport, D. Takhar, J.N. Laska, Ting Sun, K.F. Kelly, and R.G. Baraniuk. Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine, 25(2):83 –91, march 2008.Google Scholar
  55. 55.
    M.F. Duarte and Y.C. Eldar. Structured compressed sensing: From theory to applications. IEEE Transactions on Signal Processing, 59(9):4053 –4085, sept. 2011.Google Scholar
  56. 56.
    Jr. Edward R. Dowski and W. Thomas Cathey. Extended depth of field through wave-front coding. Appl. Opt., 34(11):1859–1866, Apr. 1995.Google Scholar
  57. 57.
    M. Elad. Sparse and Redundant Representations: From theory to applications in Signal and Image processing. Springer, 2010.Google Scholar
  58. 58.
    K. Engan, S. O. Aase, and J. H. Husoy. Method of optimal directions for frame design. Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 5:2443–2446, 1999.Google Scholar
  59. 59.
    K. Etemand and R. Chellappa. Separability-based multiscale basis selection and feature extraction for signal and image classification. IEEE Transactions on Image Processing, 7(10):1453–1465, Oct. 1998.Google Scholar
  60. 60.
    Christy A. Fernandez, David Brady, Joseph N. Mait, and David A. Wikner. Sparse fourier sampling in millimeter-wave compressive holography. In Digital Holography and Three-Dimensional Imaging, page JMA14, 2010.Google Scholar
  61. 61.
    M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright. Gradient Projection for Sparse Reconstruction: Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 1(4):586–598, 2007.Google Scholar
  62. 62.
    Robert T. Frankot and Rama Chellappa. A method for enforcing integrability in shape from shading algorithms. IEEE Trans. Pattern Anal. Mach. Intell., 10(4):439–451, 1988.Google Scholar
  63. 63.
    S. Gao, I. W. Tsang, and L.-T. Chia. Kernel sparse representation for image classification and face recognition. In European Conference on Computer Vision, volume 6314, 2010.Google Scholar
  64. 64.
    A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman. From few to many: Ilumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Analysis and Machine Intelligence, 23(6):643–660, June 2001.Google Scholar
  65. 65.
    T. Goldstein and S. Osher. The split Bregman algorithm for L1 regularized problems. Technical report, UCLA CAM.Google Scholar
  66. 66.
    J. W. Goodman. Introduction to Fourier optics. Englewood, CO: Roberts and Company, 2005.Google Scholar
  67. 67.
    N. Gopalsami, T. W. Elmer, S. Liao, R. Ahern, A. Heifetz, A. C. Raptis, M. Luessi, S. D. Babacan, and A. K. Katsaggelos. Compressive sampling in passive millimeter-wave imaging. In Proc. SPIE, volume 8022, 2011.Google Scholar
  68. 68.
    I. F. Gorodnitsky and B. D. Rao. Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 45(3):600616, March 1997.Google Scholar
  69. 69.
    R. Gribonval and M. Nielsen. Sparse representations in unions of bases. IEEE Transactions on Information Theory, 49(12):3320 – 3325, dec. 2003.Google Scholar
  70. 70.
    W. Guoa and W. Yin. Edgecs: Edge guided compressive sensing reconstruction. Rice University CAAM Technical Report TR10-02, 2010.Google Scholar
  71. 71.
    K. Huang and S. Aviyente. Sparse representation for signal classification. NIPS, 19:609–616, 2007.Google Scholar
  72. 72.
    A.K. Jain, S. Prabhakar, L. Hong, and S. Pankanti. Filterbank-based fingerprint matching. IEEE Transactions on Image Processing, 9(5):846–859, May 2000.Google Scholar
  73. 73.
    Zhuolin Jiang, Zhe Lin, and L.S. Davis. Learning a discriminative dictionary for sparse coding via label consistent k-svd. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1697 –1704, june 2011.Google Scholar
  74. 74.
    S-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. An interior-point method for large-scale 1-regularized least squares. IEEE Journal of Selected Topics in Signal Processing, 1(4):606–617, Dec. 2007.Google Scholar
  75. 75.
    E. Kokiopoulou and P. Frossard. Semantic coding by supervised dimensionality reduction. IEEE Trans. Multimedia, 10(5):806–818, Aug. 2008.Google Scholar
  76. 76.
    P. Kovesi. Shapelets correlated with surface normals produce surfaces. In ICCV, volume 2, pages 994 –1001 Vol. 2, oct. 2005.Google Scholar
  77. 77.
    B. Krishnapuram, L. Carin, M.A.T. Figueiredo, and A.J. Hartemink. Sparse multinomial logistic regression: fast algorithms and generalization bounds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6):957 –968, June 2005.Google Scholar
  78. 78.
    S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 2, pages 2169 – 2178, 2006.Google Scholar
  79. 79.
    M. Lustig, D. Donoho, and M. J. Pauly. Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging. Magnetic Resonance in Medicine, 58(6):1182–1195, Dec. 2007.Google Scholar
  80. 80.
    M. Lustig, D.L. Donoho, J.M. Santos, and J.M. Pauly. Compressed sensing mri. IEEE Signal Processing Magazine, 25(2):72 –82, march 2008.Google Scholar
  81. 81.
    X. Feng M. Yang, L. Zhang and D. Zhang. Fisher discrimination dictionary learning for sparse representation, 2011. ICCV.Google Scholar
  82. 82.
    J. Mairal, F. Bach, J. Pnce, G. Sapiro, and A. Zisserman. Discriminative learned dictionaries for local image analysis. Proc. of the Conference on Computer Vision and Pattern Recognition, 2008.Google Scholar
  83. 83.
    J. Mairal, F. Bach, and J. Ponce. Task-driven dictionary learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(4):791 –804, april 2012.Google Scholar
  84. 84.
    J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Supervised dictionary learning. Advances in Neural Information Processing Systems, 2008.Google Scholar
  85. 85.
    J.N. Mait, D.A. Wikner, M.S. Mirotznik, J. van der Gracht, G.P. Behrmann, B.L. Good, and S.A. Mathews. 94-GHz imager with extended depth of field. IEEE Transactions on Antennas and Propagation, 57(6):1713 –1719, june 2009.Google Scholar
  86. 86.
    A. Maleki and D.L. Donoho. Optimally tuned iterative reconstruction algorithms for compressed sensing. IEEE Journal of Selected Topics in Signal Processing, 4(2):330–341, april 2010.Google Scholar
  87. 87.
    S Mallat. A wavelet tour of signal processing, second edition. Academic Press, San Diego, CA, 1999.Google Scholar
  88. 88.
    S. Mallat and Z. Zhang. Matching Pursuit with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(12):33973415, 1993.Google Scholar
  89. 89.
    L. Masek and P. Kovesi. Matlab source code for a biometric identification system based on iris patterns. The School of Computer Science and Software Engineering, The University of Western Australia, 2003.Google Scholar
  90. 90.
    L. Meier, S. V. D. Geer, and P. Bhlmann. The group lasso for logistic regression. Journal of the Royal Statistical Society: Series B, 70(1):53–71, 2008.Google Scholar
  91. 91.
    L. B. Montefusco, D. Lazzaro, and S. Papi. Nonlinear filtering for sparse signal recovery from incomplete measurements. IEEE Trans. Sig. Proc., 57(7):2494–2502, July 2009.Google Scholar
  92. 92.
    Jr. Munson, D.C., J.D. O’Brien, and W.K. Jenkins. A tomographic formulation of spotlight-mode synthetic aperture radar. Proceedings of the IEEE, 71(8):917 – 925, aug. 1983.Google Scholar
  93. 93.
    D. Needell and J. A. Tropp. Cosamp: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comp. Harmonic Anal., 26:301–321, 2008.Google Scholar
  94. 94.
    D. Needell and R. Vershynin. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE Journal of Selected Topics in Signal Processing, 4(2):310 –316, april 2010.Google Scholar
  95. 95.
    H. V. Nguyen, V. M. Patel, N. M. Nasrabadi, and R. Chellappa. Design of non-linear kernel dictionaries for object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted 2012.Google Scholar
  96. 96.
    H. V. Nguyen, V. M. Patel, N. M. Nasrabadi, and R. Chellappa. Kernel dictionary learning. In IEEE International Conference on Acoustics, Speech and Signal Processing, 2012.Google Scholar
  97. 97.
    Nam H. Nguyen, Nasser M. Nasrabadi, and Trac D. Tran. Robust multi-sensor classification via joint sparse representation. In International Conference on Information Fusion, 2011.Google Scholar
  98. 98.
    Imoma Noor, Orges Furxhi, and Eddie L. Jacobs. Compressive sensing for a sub-millimeter wave single pixel imager. In Proc. SPIE, volume 8022, 2011.Google Scholar
  99. 99.
    B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583):607–609, 1996.Google Scholar
  100. 100.
    V. M. Patel and R. Chellappa. Sparse representations, compressive sensing and dictionaries for pattern recognition. In Asian Conference on Pattern Recognition, 2010.Google Scholar
  101. 101.
    V. M. Patel, G. R. Easley, and D. M. Healy. Automatic target recognition based on simultaneous sparse representation. IEEE International Conference on Image Processing, submitted, 2010.Google Scholar
  102. 102.
    V. M. Patel, G. R. Easley, D. M. Healy, and R. Chellappa. Compressed sensing for synthetic aperture radar imaging. International Conference on Image Processing, submitted, 2009.Google Scholar
  103. 103.
    V. M. Patel, G. R. Easley, D. M. Healy, and R. Chellappa. Compressed synthetic aperture radar. IEEE Journal of Selected Topics in Signal Processing, 4(2):244–254, April 2010.Google Scholar
  104. 104.
    V. M. Patel and J. N. Mait. Compressive passive millimeter-wave imaging with extended depth of field. Optical Engineering, 51(9), 2012.Google Scholar
  105. 105.
    V. M. Patel and J. N. Mait. Passive millimeter-wave imaging with extended depth of field and sparse data. IEEE International Conference on Acoustics, Speech and Signal Processing, 2012.Google Scholar
  106. 106.
    V. M. Patel, N. M. Nasrabadi, and R. Chellappa. Sparsity-motivated automatic target recognition. Applied Optics, 50(10), April 2011.Google Scholar
  107. 107.
    Vishal M. Patel, Tao Wu, Soma Biswas, P. Jonathon Phillips, and Rama Chellappa. Dictionary-based face recognition under variable lighting and pose. IEEE Transactions on Information Forensics and Security, 7(3):954–965, 2012.Google Scholar
  108. 108.
    V.M. Patel, R. Maleh, A.C. Gilbert, and R. Chellappa. Gradient-based image recovery methods from incomplete fourier measurements. IEEE Transactions on Image Processing, 21(1):94 –105, jan. 2012.Google Scholar
  109. 109.
    Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal Matching Pursuit: Recursive function approximation with applications to wavelet decomposition. In Proc. 27th Ann. Asilomar Conf. Signals, Systems, and Computers, Nov. 1993.Google Scholar
  110. 110.
    P. Peers, D. K. Mahajan, B. Lamond, A. Ghosh, W. Matusik, R. Ramamoorthi, and P. Debevec. Compressive light transport sensing. ACM Trans. Graph., 28(1):3:1–3:18, February 2009.Google Scholar
  111. 111.
    J. Pillai, V. M. Patel, and R. Chellappa. Sparsity inspired selection and recognition of iris images. Third IEEE International Conference on Biometrics : Theory, Applications and Systems, 2009.Google Scholar
  112. 112.
    Jaishanker K. Pillai, Vishal M. Patel, Rama Chellappa, and Nalini K. Ratha. Secure and robust iris recognition using random projections and sparse representations. IEEE Trans. Pattern Anal. Mach. Intell., 33(9):1877–1893, September 2011.Google Scholar
  113. 113.
    S.J. Pundlik, D.L. Woodard, and S.T. Birchfield. Non-ideal iris segmentation using graph cuts. In IEEE CVPR Workshop, pages 1–6, June 2008.Google Scholar
  114. 114.
    Q. Qiu, V. M. Patel, and R. Chellappa. Information-theoretic dictionary learning for image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted 2012.Google Scholar
  115. 115.
    Qiang Qiu, Zhuolin Jiang, and Rama Chellappa. Sparse dictionary-based representation and recognition of action attributes. In International Conference on Computer Vision, 2011.Google Scholar
  116. 116.
    D. Reddy, A. Sankaranarayanan, V. Cevher, and R. Chellappa. Compressed sensing for multi-view tracking and 3-d voxel reconstruction. IEEE International Conference on Image Processing, (4):221–224, 2008.Google Scholar
  117. 117.
    D. Reddy, A. Veeraraghavan, and R. Chellappa. P2c2: Programmable pixel compressive camera for high speed imaging. Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, pages 329–336, 2011.Google Scholar
  118. 118.
    Dikpal Reddy, Amit K. Agrawal, and Rama Chellappa. Enforcing integrability by error correction using l1-minimization. In CVPR, pages 2350–2357, 2009.Google Scholar
  119. 119.
    F. Rodriguez and G. Sapiro. Sparse representations for image classification: Learning discriminative and reconstructive non-parametric dictionaries. Tech. Report, University of Minnesota, Dec. 2007.Google Scholar
  120. 120.
    A. Ross, K. Nandakumar, and A. K. Jain. Handbook of Multibiometrics. Springer, 2006.Google Scholar
  121. 121.
    R. Rubinstein, A.M. Bruckstein, and M. Elad. Dictionaries for sparse representation modeling. Proceedings of the IEEE, 98(6):1045 –1057, june 2010.Google Scholar
  122. 122.
    M. Rudelson and R. Vershynin. On sparse reconstruction from fourier and gaussian measurements. Comm. on Pure and Applied Mathematics, 61:1025–1045, 2008.Google Scholar
  123. 123.
    C. Wu S. Chikkerur and V. Govindaraju. A systematic approach for feature extraction in fingerprint images. In Int. Conference on Bioinformatics and its Applications, page 344, 2004.Google Scholar
  124. 124.
    S. Schuckers S. Crihalmeanu, A. Ross and L. Hornak. A protocol for multibiometric data acquisition, storage and dissemination. In Technical Report, WVU, Lane Department of Computer Science and Electrical Engineering, 2007.Google Scholar
  125. 125.
    A. Sankaranarayanan,, A. Veeraraghavan, and R. Chellappa. Object detection, tracking and recognition for multiple smart cameras. Proceedings of the IEEE, 96(10):1606–1624, 2008.Google Scholar
  126. 126.
    A. Sankaranarayanan and R. Chellappa. Optimal multi-view fusion of object locations. IEEE Workshop on Motion and Video Computing, pages 1–8, 2008.Google Scholar
  127. 127.
    Aswin C. Sankaranarayanan, Pavan K. Turaga, Richard G. Baraniuk, and Rama Chellappa. Compressive acquisition of dynamic scenes. In ECCV, pages 129–142, 2010.Google Scholar
  128. 128.
    B. Scholkopf and A. J. Smola. Learning With Kernels, Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2001.Google Scholar
  129. 129.
    H. S. Shapiro and R. A. Silverman. Alias-free sampling of random noise. SIAM, 8(2):225–248, June 1959.Google Scholar
  130. 130.
    S. Shekhar, V. M. Patel, N. M. Nasrabadi, and R. Chellappa. Joint sparsity-based robust multimodal biometrics recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, to be submitted 2012.Google Scholar
  131. 131.
    S. Shekhar, V.M. Patel, and R. Chellappa. Synthesis-based recognition of low resolution faces. In International Joint Conference onBiometrics, pages 1 –6, oct. 2011.Google Scholar
  132. 132.
    A. Shrivastava, H. V. Nguyen, V. M. Patel, and R. Chellappa. Design of non-linear discriminative dictionaries for image classification. In Asian Conference on Computer Vision, page submitted, 2012.Google Scholar
  133. 133.
    A. Shrivastava, J. K. Pillai, V. M. Patel, and R. Chellappa. Learning discriminative dictionaries with partially labeled data. In IEEE International Conference on Image Processing, pages 1–14, 2012.Google Scholar
  134. 134.
    Tal Simchony, Rama Chellappa, and M. Shao. Direct analytical methods for solving poisson equations in computer vision problems. IEEE Trans. Pattern Anal. Mach. Intell., 12(5):435–446, 1990.Google Scholar
  135. 135.
    P. Sinha, B. Balas, Y. Ostrovsky, and R. Russell. Face recognition by humans: Nineteen results all computer vision researchers should know about. Proceedings of the IEEE, 94(11):1948 –1962, nov. 2006.Google Scholar
  136. 136.
    M. Soumekh. Synthetic Aperture Radar Signal Processing With Matlab Algorithms. Wiley, New York, NY, 1999.Google Scholar
  137. 137.
    R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B, 58(1):267–288, 1996.Google Scholar
  138. 138.
    J. A. Tropp and A. C. Gilbert. Signal recovery from partial information via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12):4655–4666, 2006.Google Scholar
  139. 139.
    Joel A. Tropp. Algorithms for simultaneous sparse approximation: part ii: Convex relaxation. Signal Process., 86(3):589–602, March 2006.Google Scholar
  140. 140.
    Joel A. Tropp, Anna C. Gilbert, and Martin J. Strauss. Algorithms for simultaneous sparse approximation: part i: Greedy pursuit. Signal Process., 86(3):572–588, March 2006.Google Scholar
  141. 141.
    J. Trzasko and A. Manduca. Highly undersampled magnetic resonance image reconstruction via homotopic ell 0 -minimization. IEEE Transactions on Medical Imaging, 28(1):106 –121, jan. 2009.Google Scholar
  142. 142.
    Y. Tsaig and D. L. Donoho. Extensions of compressed sensing. Signal Processing, 86(3):533–548, March 2006.Google Scholar
  143. 143.
    P. Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optimization Theory and Applications, 109(3):475–494, June 2006.Google Scholar
  144. 144.
    P. Turaga, A. Veeraraghavan, and R. Chellappa. Unsupervised view and rate invariant clustering of video sequences. CVIU, 113(3):353–371, 2009.Google Scholar
  145. 145.
    O. Tuzel, F. M. Porikli, and P. Meer. Region covariance: A fast descriptor for detection and classification. In ECCV, pages II: 589–600, 2006.Google Scholar
  146. 146.
    N. Vaswani. Kalman filtered compressed sensing. IEEE International Conference on Image Processing, (1):893–896, 2008.Google Scholar
  147. 147.
    A. Veeraraghavan, D. Reddy, and R. Raskar. Coded strobing photography: Compressive sensing of high speed periodic videos. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(4):671 –686, 2011.Google Scholar
  148. 148.
    A. Veeraraghavan, A. K. Roy-Chowdhury, and R. Chellappa. Matching shape sequences in video with applications in human movement analysis. TPAMI, 27:1896–1909, 2005.Google Scholar
  149. 149.
    M.B. Wakin, J.N. Laska, M.F. Duarte, D. Baron, S. Sarvotham, D. Takhar, K.F. Kelly, and R.G. Baraniuk. An architecture for compressive imaging. In IEEE International Conference on Image Processing, pages 1273 –1276, oct. 2006.Google Scholar
  150. 150.
    E. Wang, J. Silva, and L. Carin. Compressive particle filtering for target tracking. IEEE Workshop on Statistical Signal Processing, pages 233–236, 2009.Google Scholar
  151. 151.
    Y. Wang, W. Yin, and Y. Zhang. A new alternating minimization algorithm for total variation image reconstruction. SIAM Journal on Imaging Sciences, 1(3):248–272, July 2008.Google Scholar
  152. 152.
    G. Warnell, D. Reddy, and R. Chellappa. Adaptive rate compressive sensing for background subtraction. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2012.Google Scholar
  153. 153.
    R. M. Willett, R. F. Marcia, and J. M. Nichols. Compressed sensing for practical optical imaging systems: a tutorial. Optical Engineering, 50(7):072601(1)–072601(13), Jul. 2011.Google Scholar
  154. 154.
    G.A. Wright. Magnetic resonance imaging. IEEE Signal Processing Magazine, 14(1):56–66, jan 1997.Google Scholar
  155. 155.
    J. Wright, Yi Ma, J. Mairal, G. Sapiro, T.S. Huang, and Shuicheng Yan. Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE, 98(6):1031 –1044, june 2010.Google Scholar
  156. 156.
    J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma. Robust face recognition via sparse representation. IEEE Trans. Pattern Analysis and Machine Intelligence, 31(2):210–227, 2009.Google Scholar
  157. 157.
    S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. Sparse Reconstruction by Separable Approximation. preprint.Google Scholar
  158. 158.
    J. Yang, Y. Zhang, and W. Yin. A fast alternating direction method for tvl1-l2 signal reconstruction from partial fourier data. IEEE Journal of Selected Topics in Signal Processing, 4(2):288 –297, april 2010.Google Scholar
  159. 159.
    W. Yin, S. Osher, J. Darbon, and D. Goldfarb. Bregman iterative algorithms for compressed sensing and related problems. Technical report, UCLA CAM.Google Scholar
  160. 160.
    M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B, 68(1):49–67, 2006.Google Scholar
  161. 161.
    X.-T. Yuan and S. Yan. Visual classification with multi-task joint sparse representation. In Computer Vision and Pattern Recognition, 2010.Google Scholar
  162. 162.
    L. Yujiri, M. Shoucri, and P. Moffa. Passive millimeter wave imaging. IEEE Microwave Magazine, 4(3):39 – 50, sept. 2003.Google Scholar
  163. 163.
    Li Zhang, Wei-Da Zhou, Pei-Chann Chang, Jing Liu, Zhe Yan, Ting Wang, and Fan-Zhang Li. Kernel sparse representation-based classifier. IEEE Transactions on Signal Processing, 60(4):1684 –1695, april 2012.Google Scholar
  164. 164.
    Q. Zhang and B. Li. Discriminative k-svd for dictionary learning in face recognition. In Computer Vision and Pattern Recognition, 2010.Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Vishal M. Patel
    • 1
  • Rama Chellappa
    • 2
  1. 1.Center for Automation ResearchUniversity of MarylandCollege ParkUSA
  2. 2.Department of Electrical and Computer Engineering and Center for Automation ResearchUniversity of MarylandCollege ParkUSA

Personalised recommendations