Skip to main content

CBF-Dependent Cold Stress Signaling Relevant Post Translational Modifications

  • Chapter
  • First Online:
Book cover Stress Signaling in Plants: Genomics and Proteomics Perspective, Volume 1

Abstract

Plants being sessile have developed intricate mechanisms to sustain and adapt to stress conditions. Cold/freezing stress leads to huge economical losses to crops, fruits and vegetables. Over last two decades a lot of research about transcriptional regulation of cold stress signaling has accumulated wealth of information but these studies have limitations as effect of post-transcriptional and post translational events cannot be analyzed. None the less, it is very well established that cold stress signaling could either be CBF dependent or independent. CBF dependent signaling regulates 12% cold responsive genes. The post translational regulation of CBF signaling is not very well understood. Therefore, an attempt has been made to summarize all cold stress relevant PTMs and their regulatory role in CBF dependent stress signaling. Currently more than 350 PTMs are known. Phosphorylation, redox based modifications of cysteine thiols (e.g. disulphide bonding and S-nitrosylation) and ubiquitinylation have been shown to be associated with cold signaling. Phosphorylation is one of the best known post-translational protein modifications. An important task of turning off the regulons is done by repressors and degradation through 26S proteasome via ubiquitination. ICE1, an upstream regulator of CBF dependent signaling is known to be post-translationally modified by ubiquitination and sumoylation. The RING finger protein HOS1, an E3 ligase physically interacts with ICE1 and mediates c(Zhao et al. 2009 in vivo and in vitro. Sumoylation prevents ubiquitination and thus might have role in protection of proteins. SIZ1, an Arabidopsis SUMO E3 ligase sumoylates ICE1, blocks its polyubiquitination resulting in its stabilization and increased activity. Role of S-nitrosylation as PTM in cold regulon is not clear yet but there are reports of it affecting DNA binding ability of AtMYB2. Significance of these PTMs in cold tolerance would be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CBF:

c-repeat binding factor

ICE:

Inducer of CBF expression

PTM:

Post translational modifications

References

  • Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636–37645

    Article  PubMed  CAS  Google Scholar 

  • Astier J, Rasul S, Koen E, Manzoor H, Besson-Bard A, Lamotte O, Jeandroz S, Durner J, Lindermayr C, Wendehenne D (2011) S-nitrosylation: An emerging post-translational protein modification in plants. Plant Sci 181:527–533

    Article  PubMed  CAS  Google Scholar 

  • Auld KL, Brown CR, Casolari JM, Komili S, Silver PA (2006) Genomic association of the proteasome demonstrates overlapping gene regulatory activity with transcription factor substrates. Mol Cell 2:861–871

    Article  Google Scholar 

  • Bentem SF, Roitinger E, Anrather D, Csazar E, Hirt H (2006) Phosphoproteomics as a tool to unravel plant regulatory mechanisms. Physiol Plantarum 126:110–119

    Article  Google Scholar 

  • Bernier-Villamor V, Sampson DA, Matunis MJ, Lima CD (2002) Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108:345–356

    Article  PubMed  CAS  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39

    Article  PubMed  CAS  Google Scholar 

  • Bhaumik SR, Malik S (2008) Diverse regulatory mechanisms of eukaryotic transcriptional activation by the proteasome complex. Crit Rev Biochem Mol Bio 43:419–433

    Article  CAS  Google Scholar 

  • Brendeford EM, Andersson KB, Gabrielsen OS (1998) Nitric oxide (NO) disrupts specific DNA binding of the transcription factor c-Myb in vitro. FEBS Lett 425:52–56

    Article  PubMed  CAS  Google Scholar 

  • Cantrel C, Vazquez T, Puyaubert J, Reze N, Lesch M, Kaiser WM, Dutilleul C, Guillas I, Zachowski A, Baudouin E (2011) Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytol 189:415–427

    Article  PubMed  CAS  Google Scholar 

  • Catala R, Ouyang J, Abreu IA, Hu Y, Seo H, Zhang X, Chua NH (2007) The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell 19:2952–2966

    Article  PubMed  CAS  Google Scholar 

  • Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA 103:8281–8286

    Article  PubMed  CAS  Google Scholar 

  • Downes B, Vierstra RD (2005) Post-translational regulation in plants employing a diverse set of polypeptide tags. Biochem Soc Trans 33:393–399

    Article  PubMed  CAS  Google Scholar 

  • Elsasser S, Finley D (2005) Delivery of ubiquitinated substrates to protein unfolding machines. Nat Cell Biol 7:742–749

    Article  PubMed  CAS  Google Scholar 

  • Feechan A, Kwon E, Yun BW, Wang Y, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci USA 102:8054–8059

    Article  PubMed  CAS  Google Scholar 

  • Fleming JA, Lightcap ES, Sadis S, Thoroddsen V, Bulawa CE, Blackman RK (2002) Complementary whole-genome technologies reveal the cellular response to proteasome inhibition by PS-341. Proc Natl Acad Sci USA 99:1461–1466

    Article  PubMed  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Karim M (2005) Regulating the regulators: control of protein ubiquitination and ubiquitin-like modifications by extracellular stimuli. Mol Cell 19:581–593

    Article  PubMed  CAS  Google Scholar 

  • Geiss-Fridelander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8:947–956

    Article  Google Scholar 

  • Gill G (2005) Something about SUMO inhibits transcription. Curr Opin Genet Dev 15:536–541

    Article  PubMed  CAS  Google Scholar 

  • Glickman MH, Ciechanover A (2002) The Ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    PubMed  CAS  Google Scholar 

  • Guehmann S, Vorbrueggen G, Kalkbrenner F, Moelling K (1992) Reduction of a conserved Cys is essential for Myb DNA-binding. Nucleic Acids Res 20:2279–2286

    Article  PubMed  CAS  Google Scholar 

  • Hay RT (2005) SUMO: a history of modification. Mol Cell 18:1–12

    Article  PubMed  CAS  Google Scholar 

  • Heine GF, Hernandez JM, Grotewold E (2004) Two cysteines in plant R2R3 MYB domains participate in REDOX-dependent DNA binding. J Biol Chem 279:37878–37885

    Article  PubMed  CAS  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–480

    Article  PubMed  CAS  Google Scholar 

  • Hershko A, Eytan E, Ciechanover A, Haas AL (1982) Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells. Relationship to the breakdown of abnormal proteins. J Biol Chem 257:13964–13970

    PubMed  CAS  Google Scholar 

  • Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6(2):150–166

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser M (2009) Origin and function of ubiquitin-like proteins. Nature 458:422–429

    Article  PubMed  CAS  Google Scholar 

  • Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H (1996) Stress signaling in plants: a mitogen activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA 93:11274–11279

    Article  PubMed  CAS  Google Scholar 

  • Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev 22:159–180

    Article  CAS  Google Scholar 

  • Kim SO, Merchant K, Nudelman R, Beyer WF Jr, Keng T, DeAngelo J, Hausladen A, Stamler JS (2002) OxyR: a molecular code for redox related signaling. Cell 109:383–396

    Article  PubMed  CAS  Google Scholar 

  • Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Imaging calcium dynamics in living plants using semi-synthetic recombinant aequorins. Nature 352:524–526

    Article  PubMed  CAS  Google Scholar 

  • Konstantinova IM, Tsimokha AS, Mittenberg AG (2008) Role of proteasomes in cellular regulation. Int Rev Mol Biol 267:59–124

    Article  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses I. Chilling, freezing, and high temperature stresses. Academic, New York

    Google Scholar 

  • Lindermayr C, Durner J (2009) S-nitrosylation in plants: pattern and function. J Proteomics 73:1–9

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982–993

    Article  PubMed  CAS  Google Scholar 

  • Mazzucotelli E, Mastrangelo AM, Crosatti C, Guerra D, Stanca AM, Cattiveli L (2008) Abiotic stress response in plants: When post-transcriptional and post-translational regulations control transcription. Plant Sci 174:420–431

    Article  CAS  Google Scholar 

  • Melchior F, Schergaut M, Pichler A (2003) SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem Sci 28:612–618

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Jin JB, Hasegawa PM (2007) Sumoylation, a post-translational regulatory process in plants. Curr Opin Plant Biol 10:495–502

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Ohta M, Nakazawa M, Ono M, Hasegawa PM (2011) ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance. Plant J 67:269–279

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K (1996) A gene encoding a mitogen activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 93:765–769

    Article  PubMed  CAS  Google Scholar 

  • Monroy AF, Dhindsa RS (1995) Low temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25°C. Plant Cell 7:321–331

    PubMed  CAS  Google Scholar 

  • Monroy AF, Sangwan V, Dhindsa RS (1998) Low temperature signal transduction during cold acclimation: protein phosphatase 2A as an early target for cold inactivation. Plant J 13:653–660

    Article  CAS  Google Scholar 

  • Myung J, Kim BK, Crews CM (2001) The ubiquitin-proteasome pathway and proteasome inhibitors. Med Res Rev 21:245–273

    Article  PubMed  CAS  Google Scholar 

  • Neill S, Bright J, Desikan R, Hancock J, Harrison J, Wilson I (2008) Nitric oxide evolution and perception. J Exp Bot 59:25–35

    Article  PubMed  CAS  Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568

    Article  PubMed  CAS  Google Scholar 

  • Pickart CM, Rose IA (1985) Functional heterogeneity of ubiquitin carrier proteins. J Biol Chem 260:1573–1581

    PubMed  CAS  Google Scholar 

  • Rusterucci C, Espunya MC, Diaz M, Chabannes M, Martinez MC (2007) S-nitrosoglutathione reductase affords protection against pathogens in Arabidopsis, both locally and systemically. Plant Physiol 143:1282–1292

    Article  PubMed  CAS  Google Scholar 

  • Serpa V, Vernal J, Lamattina L, Grotewold E, Cassia R, Terenzi H (2007) Inhibition of AtMYB2 DNA-binding by nitric oxide involves cysteine S-nitrosylation. Biochem Biophys Res Commun 361:1048–1053

    Article  PubMed  CAS  Google Scholar 

  • Shinwari ZK, Nakashima K, Miura S, Kasuga M, Seki M, Yamaguchi- Shinozaki K, Shinozaki K (1998) Biochem Biophys Res Commun 250:161–170

    Article  PubMed  CAS  Google Scholar 

  • Spoel SH, Tada Y, Loake GJ (2010) Post-translational protein modification as a tool for transcription reprogramming. New Phytol 186:333–339

    Article  PubMed  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerant genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19:94–102

    Article  PubMed  CAS  Google Scholar 

  • Trewavas AJ, Gilroy S (1991) Signal transduction in plant cells. Trends Genet 7:356–361

    PubMed  CAS  Google Scholar 

  • Tsuda K, Tsvetanov S, Takumi S, Mori N, Atanassov A, Nakamura C (2000) New members of a cold-responsive group-3 Lea ⁄ Rab-related Cor gene family from common wheat (Triticum aestivum L.). Genes Genet Syst 75:179–188

    Article  PubMed  CAS  Google Scholar 

  • Ulrich HD (2005) Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest. Trends Cell Biol 15:525–532

    Article  PubMed  CAS  Google Scholar 

  • Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1067

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Yun BW, Kwon E, Hong JK, Yoon J, Loake GJ (2006) S-nitrosylation: an emerging redox-based post-translational modification in plants. J Exp Bot 57:1777–1784

    Article  PubMed  CAS  Google Scholar 

  • Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169–178

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  PubMed  CAS  Google Scholar 

  • Zhang CZ, Fei SZ, Warnke S, Li LJ, Hannapel D (2009) Identification of genes associated with cold acclimation in perennial ryegrass. J Plant Physiol 166:1436–1445

    Article  PubMed  CAS  Google Scholar 

  • Zhao MG, Chen L, Zhang LL, Zhang WH (2009) Nitric reductase dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151:755–767

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Partial financial support from DST/SAP/DST PURSE grants of government of India to RD and research fellowship to PK is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Deswal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kashyap, P., Deswal, R. (2013). CBF-Dependent Cold Stress Signaling Relevant Post Translational Modifications. In: Sarwat, M., Ahmad, A., Abdin, M. (eds) Stress Signaling in Plants: Genomics and Proteomics Perspective, Volume 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6372-6_6

Download citation

Publish with us

Policies and ethics