Skip to main content

Ca2+, Calmodulin and Plant-Specific Calmodulin-Binding Proteins: Implications in Abiotic Stress Adaptation

  • Chapter
  • First Online:
Book cover Stress Signaling in Plants: Genomics and Proteomics Perspective, Volume 1

Abstract

The response of plants to different environmental cues is mediated through various secondary messengers. Calmodulin (CaM) is one of the most extensively studied sensors of Ca2+, which is one of the important secondary messenger molecules. Ca2+-CaM regulates the response of the cell by modulating the activity of several proteins, which are termed as CaM-binding proteins (CaMBPs). Several CaMBPs have been identified in higher organisms and many of the CaM-target proteins are similar in plants and animals, whereas, others are specific only to plants. Recent studies suggest that some of the CaMBPs constitute an integral component of the plant response to abiotic stress conditions. The present review is an attempt to summarize the progress made in understanding the role of CaMBPs in abiotic stress adaptation of plants and their likely implications in agricultural improvement of the crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a.a.:

Amino acid

Ca2+ :

Calcium

CaM:

Calmodulin

CaMBD:

Calmodulin-binding domain

CaMBOT:

Calmodulin-binding gel overlay technique

CaMBP:

Calmodulin-binding protein

CAMTA:

Calmodulin-binding transcription activator

CBK:

Calmodulin-binding kinase

CRCK:

Cytoplasmic-localized Ca2+-CaM regulated kinase

CRLK:

Plasma membrane-localized Ca2+-CaM regulated kinase

HS:

Heat stress

HSF:

Heat shock factor

Hsp:

Heat shock protein

MAPK:

Mitogen activated protein kinase

MEK:

MAPK kinase

MEKK:

MAPK kinase kinase

PCD:

Programmed cell death

SA:

Salicylic acid

References

  • Akama K, Takaiwa F (2007) C-terminal extension of rice glutamate decarboxylase (OsGAD2) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells. J Exp Bot 58:2699–2707

    PubMed  CAS  Google Scholar 

  • Alexander KA, Wakim BT, Doyle GS, Walsh KA, Storm DR (1988) Identification and characterization of the calmodulin-binding domain of neuromodulin, a neurospecific calmodulin-binding protein. J Biol Chem 263:7544–7549

    PubMed  CAS  Google Scholar 

  • Ali GS, Reddy VS, Lindgren PB, Jakobek JL, Reddy ASN (2003) Differential expression of genes encoding calmodulin-binding proteins in response to bacterial pathogens and inducers of defense responses. Plant Mol Biol 51:803–815

    PubMed  CAS  Google Scholar 

  • Angilletta MJ Jr (2009) Looking for answers to questions about heat stress: researchers are getting warmer. Funct Ecol 23:231–232

    Google Scholar 

  • Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171–182

    PubMed  CAS  Google Scholar 

  • Babu YS, Bugg CE, Cook WJ (1988) Structure of calmodulin refined at 2.2 Å resolution. J Mol Biol 204:191–204

    PubMed  CAS  Google Scholar 

  • Barre A, Herve C, Lescure B, Rouge P (2002) Lectin receptor kinases in plants. Crit Rev Plant Sci 21:379–399

    CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    CAS  Google Scholar 

  • Baum G, Chen Y, Arazi T, Takatsuji H, Fromm H (1993) A plant glutamate decarboxylase containing a calmodulin-binding domain. Cloning, sequence, and functional analysis. J Biol Chem 268:19610–19617

    PubMed  CAS  Google Scholar 

  • Baum G, Lev-Yadun S, Fridmann Y, Arazi T, Katsnelson H, Zik M, Fromm H (1996) Calmodulin-binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. EMBO J 15:2988–2996

    PubMed  CAS  Google Scholar 

  • Boonburapong B, Bauboocha T (2007) Genome-wide identification and analysis of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biol 7:4

    PubMed  Google Scholar 

  • Botella JR, Arteca RN (1994) Differential expression of two calmodulin genes in response to physical and chemical stimuli. Plant Mol Biol 24:757–766

    PubMed  CAS  Google Scholar 

  • Bouche N, Scharlat A, Snedden W, Bouchez D, Fromm H (2002) A novel family of calmodulin-binding transcription activators in multicellular organisms. J Biol Chem 277:21851–21861

    PubMed  CAS  Google Scholar 

  • Bouche N, Yellin A, Snedden WA, Fromm H (2005) Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol 56:435–466

    PubMed  CAS  Google Scholar 

  • Bush DS (1995) Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Mol Biol 46:95–122

    CAS  Google Scholar 

  • Charng YY, Liu HC, Liu NY, Hsu FC, Ko SS (2006) Arabidopsis Hsa32, a novel heat-shock protein, is essential for acquired thermotolerance during a long recovery period after acclimation treatment. Plant Physiol 140:1297–1305

    PubMed  CAS  Google Scholar 

  • Charpenteau M, Jaworski K, Ramirez BC, Tretyn A, Ranjeva R, Ranty BT (2004) A receptor-like kinase from Arabidopsis thaliana is a calmodulin-binding protein. Biochem J 379:841–848

    PubMed  CAS  Google Scholar 

  • Chen YR, Roux SJ (1986) Characterization of nucleoside triphosphatase activity in isolated pea nuclei and its photoreversible regulation by light. Plant Physiol 81:609–613

    PubMed  CAS  Google Scholar 

  • Cheney RE, Mooseker MS (1992) Unconventional myosins. Curr Opin Cell Biol 4:27–35

    PubMed  CAS  Google Scholar 

  • Choi MS, Kim MC, Yoo JH, Moon BC, Koo SC, Park BO, Lee JH, Koo YD, Han HJ, Lee SY, Chung WS, Lim CO, Cho MJ (2005) Isolation of a calmodulin-binding transcription factor from rice (Oryza sativa L.). J Biol Chem 280:40820–40831

    PubMed  CAS  Google Scholar 

  • Chung WS, Lee SH, Kim JC, Do HW, Kim MC, Park CY, Park HC, Lim CO, Kim WB, Harper JF, Cho MJ (2000) Identification of a calmodulin-regulated soybean Ca2+-ATPase (SCA1) that is located in the plasma membrane. Plant Cell 12:1393–1408

    PubMed  CAS  Google Scholar 

  • Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    PubMed  CAS  Google Scholar 

  • Crivici A, Ikura M (1995) Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struct 24:85–116

    PubMed  CAS  Google Scholar 

  • da Costa e Silva O (1994) CG-1, a parsley light-induced DNA-binding protein. Plant Mol Biol 25:921–924

    Google Scholar 

  • DeFalco TA, Bender KW, Snedden WA (2010) Breaking the code: Ca2+ sensors in plant signaling. Biochem J 425:27–40

    CAS  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    PubMed  CAS  Google Scholar 

  • Deswal R, Sopory SK (1991) Purification and partial characterization of glyoxalase I from a higher plant Brassica juncea. FEBS Lett 282:277–280

    PubMed  CAS  Google Scholar 

  • Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–984

    PubMed  CAS  Google Scholar 

  • Du L, Poovaiah BW (2004) A novel family of Ca2+/calmodulin-binding proteins involved in transcriptional regulation: Interaction with fsh/Ring3 class transcription activators. Plant Mol Biol 54:549–569

    PubMed  CAS  Google Scholar 

  • Du L, Ali GS, Simons KA, Hou J, Yang T, Reddy ASN, Poovaiah BW (2009) Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nature 457:1154–1158

    PubMed  CAS  Google Scholar 

  • Espartero J, Sanchez AI, Pardo JM (1995) Molecular characterization of glyoxalase-I from a higher plant; up-regulation by stress. Plant Mol Biol 29:1223–1233

    PubMed  CAS  Google Scholar 

  • Finkler A, Ashery PR, Fromm H (2007) CAMTAs: calmodulin-binding transcription activators from plants to human. FEBS Lett 581:3893–3898

    PubMed  CAS  Google Scholar 

  • Fromm H, Chua N-H (1992) Cloning of plant cDNAs encoding calmodulin-binding proteins using 35S -labeled recombinant calmodulin as a probe. Plant Mol Biol Rep 10:199–206

    CAS  Google Scholar 

  • Galon Y, Finkler A, Fromm H (2010) Calcium-regulated transcription in plants. Mol Plant 3:653–669

    PubMed  CAS  Google Scholar 

  • Gifford JL, Walsh MP, Vogel HJ (2007) Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem J 405:199–221

    PubMed  CAS  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    PubMed  CAS  Google Scholar 

  • Gong M, Li Z-G (1995) Calmodulin-binding proteins from Zea mays germs. Phytochemistry 40:1335–1339

    CAS  Google Scholar 

  • Gong M, Li YJ, Dai X, Tian M, Li ZG (1997) Involvement of calcium and calmodulin in the acquisition of heat-shock induced thermotolerance in maize seedlings. J Plant Physiol 150:615–621

    CAS  Google Scholar 

  • Hardie DG (1999) Plant protein serine/threonine kinases: classification and functions. Annu Rev Plant Physiol Plant Mol Biol 50:97–131

    PubMed  CAS  Google Scholar 

  • Heo WD, Lee SH, Kim MC, Kim JC, Chung WS, Chun HJ, Lee KJ, Park CY, Park HC, Choi JY, Cho MJ (1999) Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc Natl Acad Sci USA 96:766–771

    PubMed  CAS  Google Scholar 

  • Høj A, Jakobsen BK (1994) A short element required for turning off heat shock transcription factor: evidence that phosphorylation enhances deactivation. EMBO J 13:2617–2624

    PubMed  Google Scholar 

  • Hsieh HL, Song CJ, Roux SJ (2000) Regulation of a recombinant pea nuclear apyrase by calmodulin and casein kinase II. Biochim Biophys Acta 1494:248–255

    PubMed  CAS  Google Scholar 

  • Hua W, Li RJ, Wang L, Lu YT (2004) A tobacco calmodulin-binding protein kinase (NtCBK2) induced by high-salt/GA treatment and its expression during floral development and embryogenesis. Plant Sci 166:1253–1259

    CAS  Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84

    CAS  Google Scholar 

  • Kamphausen T, Fanghänel J, Neumann D, Schulz B, Rahfeld JU (2002) Characterization of Arabidopsis thaliana AtFKBP42 that is membrane-bound and interacts with Hsp90. Plant J 32:263–276

    PubMed  CAS  Google Scholar 

  • Kang CH, Jung WY, Kang YH, Kim JY, Kim DG, Jeong JC, Baek DW, Jin JB, Lee JY, Kim MO, Chung WS, Mengiste T, Koiwa H, Kwak SS, Bahk JD, Lee SY, Nam JS, Yun DJ, Cho MJ (2006) AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Cell Death Diff 13:84–95

    CAS  Google Scholar 

  • Katou S, Kuroda K, Seo S, Yanagawa Y, Tsuge T, Yamazaki M, Miyao A, Hirochika H, Ohashi Y (2007) A calmodulin-binding mitogen-activated protein kinase phosphatase is induced by wounding and regulates the activities of stress-related mitogen-activated protein kinases in rice. Plant Cell Physiol 48:332–344

    PubMed  CAS  Google Scholar 

  • Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524–526

    PubMed  CAS  Google Scholar 

  • Köhler C, Merkle T, Neuhaus G (1999) Characterisation of a novel gene family of putative cyclic nucleotide- and calmodulin-regulated ion channels in Arabidopsis thaliana. Plant J 18:97–104

    PubMed  Google Scholar 

  • Koo SC, Choi MS, Chun HJ, Shin DB, Park BS, Kim YH, Park HM, Seo HS, Song JT, Kang KY, Yun DJ, Chung WS, Cho MJ, Kim MC (2009) The calmodulin-binding transcription factor OsCBT suppresses defense responses to pathogens in rice. Mol Cells 27:563–570

    PubMed  CAS  Google Scholar 

  • Kurek I, Aviezer K, Erel N, Herman E, Breiman A (1999) The wheat peptidyl prolyl cis-trans-isomerase FKBP77 is heat induced and developmentally regulated. Plant Physiol 119:693–704

    PubMed  CAS  Google Scholar 

  • Kutuzov MA, Evans DE, Andreeva AV (1998) Expression and characterization of PP7, a novel plant protein Ser/Thr phosphatase distantly related to RdgC/PPEF and PP5. FEBS Lett 440:147–152

    PubMed  CAS  Google Scholar 

  • Leborgne-Castel N, Jelitto-Van Dooren EP, Crofts AJ, Denecke J (1999) Overexpression of BiP in tobacco alleviates endoplasmic reticulum stress. Plant Cell 11:459–470

    PubMed  CAS  Google Scholar 

  • Lecourieux D, Mazars C, Pauly N, Ranjeva R, Pugin A (2002) Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell 14:2627–2641

    PubMed  CAS  Google Scholar 

  • Lee SH, Kim MC, Heo WD, Kim JC, Chung WS, Park CY, Park HC, Cheong YH, Kim CY, Lee S-H, Lee KJ, Bahk JD, Lee SY, Cho MJ (1999) Competitive binding of calmodulin isoforms to calmodulin-binding proteins: implication for the function of calmodulin isoforms in plants. Biochim Biophys Acta 1433:56–67

    PubMed  CAS  Google Scholar 

  • Lee SH, Johnson JD, Walsh MP, Van Lierop JE, Sutherland C, Xu A, Snedden WA, Kosk-Kosicka D, Fromm H, Narayanan N, Cho MJ (2000) Differential regulation of Ca2+/calmodulin-dependent enzymes by plant calmodulin isoforms and free Ca2+ concentration. Biochem J 350:299–306

    PubMed  CAS  Google Scholar 

  • Lee K, Song EH, Kim HS, Yoo JH, Han HJ, Jung MS, Lee SM, Kim KE, Kim MC, Cho MJ, Chung WS (2008) Regulation of MAPK phosphatase 1 (AtMKP1) by calmodulin in Arabidopsis. J Biol Chem 283:23581–23588

    PubMed  CAS  Google Scholar 

  • Liu Z, Xia M, Poovaiah BW (1998) Chimeric calcium/calmodulin-dependent protein kinase in tobacco: differential regulation by calmodulin isoforms. Plant Mol Biol 38:889–897

    PubMed  CAS  Google Scholar 

  • Liu HT, Li B, Shang ZL, Li XZ, Mu RL, Sun DY, Zhou RG (2003) Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol 132:1186–1195

    PubMed  CAS  Google Scholar 

  • Liu HT, Li GL, Chang H, Sun DY, Zhou RG, Li B (2007) Calmodulin-binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis. Plant Cell Environ 30:156–164

    PubMed  CAS  Google Scholar 

  • Liu HT, Gao F, Li GL, Han JL, Liu DL, Sun DY, Zhou RG (2008) The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Plant J 55:760–773

    PubMed  CAS  Google Scholar 

  • Luoni L, Bonza MC, De Michelis MI (2006) Calmodulin/Ca2+-ATPase interaction at the Arabidopsis thaliana plasma membrane is dependent on calmodulin isoform showing isoform-specific Ca2+ dependencies. Physiol Plant 126:175–186

    CAS  Google Scholar 

  • Lydan MA, O’ Day DH (1994) Production of 35S-labeled proteins in E. coli and their use as molecular probes. Methods Mol Biol 31:389–396

    PubMed  CAS  Google Scholar 

  • Marcus AJ, Broekman MJ, Drosopoulos JH, Islam N, Alyonycheva TN, Safier LB, Hajjar KA, Posnett DN, Schoenborn MA, Schooley KA, Gayle RB, Maliszewski CR (1997) The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39. J Clinic Invest 99:1351–1360

    CAS  Google Scholar 

  • McCormack E, Tsai YC, Braam J (2005) Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci 10:383–389

    PubMed  CAS  Google Scholar 

  • Minorsky PV (1989) Temperature sensing by plants: A review and hypothesis. Plant Cell Environ 12:119–135

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    PubMed  CAS  Google Scholar 

  • Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, Scharf KD (2009) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6:177–189

    Google Scholar 

  • O' Day DH (2003) CaMBOT: Profiling and characterizing calmodulin-binding proteins. Cell Signal 15:347–354

    Google Scholar 

  • Oh SH, Choi WG, Lee IT, Yun SJ (2005) Cloning and characterization of a rice cDNA encoding glutamate decorboxylase. J Biochem Mol Biol 38:595–601

    PubMed  CAS  Google Scholar 

  • Osawa M, Tokumitsu H, Swindells MB, Kurihara H, Orita M, Shibanuma T, Furuya T, Ikura M (1999) A novel target recognition revealed by calmodulin in complex with Ca2+-calmodulin-dependent kinase kinase. Nat Struc Mol Biol 6:819–824

    CAS  Google Scholar 

  • Palmgren MG (2001) Plant plasma membrane H+-ATPases: Powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol 52:817–845

    PubMed  CAS  Google Scholar 

  • Pandey S, Sopory SK (1998) Biochemical evidence for a calmodulin-stimulated calcium-dependent protein kinase in maize. Eur J Biochem 255:718–726

    PubMed  CAS  Google Scholar 

  • Pandey S, Sopory SK (2001) Zea mays CCaMK: autophosphorylation-dependent substrate phosphorylation and down-regulation by red light. J Exp Bot 52:691–700

    PubMed  CAS  Google Scholar 

  • Perruc E, Charpenteau M, Ramirez BC, Jauneau A, Galaud JP, Ranjeva R, Ranty B (2004) A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings. Plant J 38:410–420

    PubMed  CAS  Google Scholar 

  • Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17:603–614

    PubMed  CAS  Google Scholar 

  • Reddy ASN (2001) Calcium: silver bullet in signaling. Plant Sci 160:381–404

    PubMed  CAS  Google Scholar 

  • Reddy RK, Kurek I, Silverstein AM, Chinkers M, Breiman A, Krishna P (1998) High-molecular-weight FK506-binding proteins are components of heat-shock protein 90 heterocomplexes in wheat germ lysate. Plant Physiol 118:1395–1401

    PubMed  CAS  Google Scholar 

  • Reddy ASN, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: Roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032

    PubMed  CAS  Google Scholar 

  • Rhoads AR, Friedberg F (1997) Sequence motifs for calmodulin recognition. FASEB J 11:331–340

    PubMed  CAS  Google Scholar 

  • Roberts DM, Harmon AC (1992) Calcium-modulated proteins: targets of intracellular calcium signals in higher plants. Annu Rev Plant Physiol Plant Mol Biol 43:375–414

    CAS  Google Scholar 

  • Roberts DM, Zielinski RE, Schleicher M, Watterson DM (1983) Analysis of suborganellar fractions from spinach and pea chloroplasts for calmodulin-binding proteins. J Cell Biol 97:1644–1647

    PubMed  CAS  Google Scholar 

  • Shelp BJ, Bown AW, McLean MD (1999) Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 4:446–452

    PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    PubMed  CAS  Google Scholar 

  • Singh P, Virdi AS (2010) Calmodulin binding proteins: implications in abiotic stress adaptation. J Plant Biol 37(1):1–17

    Google Scholar 

  • Snedden WA, Fromm H (1998) Calmodulin, calmodulin-related proteins and plant responses to the environment. Trends Plant Sci 3:299–304

    Google Scholar 

  • Snedden WA, Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151:35–66

    CAS  Google Scholar 

  • Steinebrunner I, Jeter C, Song C, Roux SJ (2000) Molecular and biochemical comparison of two different apyrases from Arabidopsis thaliana. Plant Physiol Biochem 38:913–922

    CAS  Google Scholar 

  • Stone JM, Walker JC (1995) Plant protein kinase families and signal transduction. Plant Physiol 108:451–457

    PubMed  CAS  Google Scholar 

  • Sun XT, Li B, Zhou GM, Tang WQ, Bai J, Sun DY, Zhou RG (2000) Binding of the maize cytosolic Hsp70 to calmodulin, and identification of calmodulin-binding site in Hsp70. Plant Cell Physiol 41:804–810

    PubMed  CAS  Google Scholar 

  • Sunkar R, Kaplan B, Bouché N, Arazi T, Dolev D, Talke IN, Maathuis FJ, Sanders D, Bouchez D, Fromm H (2000) Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J 24:533–542

    PubMed  CAS  Google Scholar 

  • Takayama S, Sato T, Krajewski S, Kochel K, Irie S, Milian JA, Reed JC (1995) Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. Cell 80:279–284

    PubMed  CAS  Google Scholar 

  • Takezawa D, Ramachandiran S, Paranjape V, Poovaiah BW (1996) Dual regulation of a chimeric plant serine/threonine kinase by calcium and calcium/calmodulin. J Biol Chem 271:8126–8132

    PubMed  CAS  Google Scholar 

  • Thomas C, Rajagopal A, Windsor B, Dudler R, Lloyd A, Roux SJ (2000) A role for ectophosphatase in xenobiotic resistance. Plant Cell 12:519–534

    PubMed  CAS  Google Scholar 

  • Todorov LD, Mihaylova-Todorova S, Westfall TD, Sneddon P, Kennedy C, Bjur RA, Westfall DP (1997) Neuronal release of soluble nucleotidases and their role in neurotransmitter inactivation. Nature 387:76–79

    PubMed  CAS  Google Scholar 

  • Tomsig J, Suszkiw JB (1991) Permeation of Pb2+ through calcium channels: Fura-2 measurements of voltage- and dihydropyridine-sensitive Pb2+ entry in isolated bovine chromaffin cells. Biochim Biophys Acta 1069:197–200

    PubMed  CAS  Google Scholar 

  • Torii KU (2000) Receptor kinase activation and signal transduction in plants: an emerging picture. Curr Opin Plant Biol 3:361–367

    PubMed  CAS  Google Scholar 

  • Trofimova MS, Andreev IM, Kuznetsov VV (1999) Calcium is involved in regulation of the synthesis of Hsps in suspension-cultured sugar beet cells under hyperthermia. Physiol Plant 105:67–73

    CAS  Google Scholar 

  • Turano FJ, Fang TK (1998) Characterization of two glutamate decarboxylase cDNA clones from Arabidopsis. Plant Physiol 117:1411–1421

    PubMed  CAS  Google Scholar 

  • Ulm R, Ichimura K, Mizoguchi T, Peck SC, Zhu T, Wang X, Shinozaki K, Paszkowski J (2002) Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1. EMBO J 21:6483–6493

    PubMed  CAS  Google Scholar 

  • Van der Luit AH, Olivari C, Haley A, Knight MR, Trewavas AJ (1999) Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco. Plant Physiol 121:705–714

    Google Scholar 

  • Veena RVS, Sopory SK (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over expression confer tolerance in transgenic tobacco under stress. Plant J 17:385–396

    PubMed  CAS  Google Scholar 

  • Virdi AS, Thakur A, Dutt S, Kumar S, Singh P (2009) A sorghum 85 kDa heat stress-modulated protein shows calmodulin-binding properties and cross-reactivity to anti-Neurospora crassa Hsp 80 antibodies. FEBS Lett 583:767–770

    PubMed  CAS  Google Scholar 

  • Virdi AS, Pareek A, Singh P (2011) Evidence for the possible involvement of calmodulin in regulation of steady state levels of Hsp90 family members (Hsp87 and Hsp85) in response to heat shock in sorghum. Plant Signal Behav 6:393–399

    PubMed  CAS  Google Scholar 

  • Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211

    PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 218:1–14

    PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    PubMed  CAS  Google Scholar 

  • Windsor B, Roux SJ, Lloyd A (2003) Multiherbicide tolerance conferred by AtPgp1 and apyrase overexpression in Arabidopsis thaliana. Nature Biotech 21:428–433

    CAS  Google Scholar 

  • Xuan Y, Zhou S, Wang L, Cheng Y, Zhao L (2010) Nitric oxide functions as a signal and acts upstream of AtCaM3 in thermotolerance in Arabidopsis seedlings. Plant Physiol 153:1895–1906

    PubMed  CAS  Google Scholar 

  • Yamada K, Nishimura M (2008) Cytosolic heat shock protein 90 regulates heat shock transcription factor in Arabidopsis thaliana. Plant Signal Behav 3:660–662

    PubMed  Google Scholar 

  • Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suzuki I, Nishimura M (2007) Cytosolic Hsp90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J Biol Chem 282:37794–37804

    PubMed  CAS  Google Scholar 

  • Yamakawa H, Katou S, Seo S, Mitsuhara I, Kamada H, Ohashi Y (2004) Plant MAPK phosphatase interacts with calmodulins. J Biol Chem 279:928–936

    PubMed  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci USA 99:4097–4102

    PubMed  CAS  Google Scholar 

  • Yang T, Segal G, Abbo S, Feldman M, Fromm H (1996) Characterization of the calmodulin gene family in wheat: structure, chromosomal location, and evolutionary aspects. Mol Gen Genet 252:684–694

    PubMed  CAS  Google Scholar 

  • Yang T, Chaudhuri S, Yang L, Chen Y, Poovaiah BW (2004) Calcium/calmodulin up-regulates a cytoplasmic receptor-like kinase in plants. J Biol Chem 279:42552–42559

    PubMed  CAS  Google Scholar 

  • Yang L, Ji W, Zhu Y, Gao P, Li Y, Cai H, Bai X, Guo D (2010a) GsCBRLK, a calcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress. J Exp Bot 61:2519–2533

    PubMed  CAS  Google Scholar 

  • Yang T, Chaudhuri S, Yang L, Du L, Poovaiah BW (2010b) A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants. J Biol Chem 285:7119–7126

    PubMed  CAS  Google Scholar 

  • Yap K, Kim J, Truong K, Sherman M, Yuan T, Ikura M (2000) Calmodulin target database. J Struct Funct Genomics 1:8–14

    PubMed  CAS  Google Scholar 

  • Yoo JH, Park CY, Kim JC, Do HW, Cheong MS, Park HC, Kim MC, Moon BC, Choi MS, Kang YH, Lee JH, Kim HS, Lee SM, Yoon HW, Lim CO, Yun DJ, Lee SY, Chung WS, Cho MJ (2005) Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J Biol Chem 280:3697–3706

    PubMed  CAS  Google Scholar 

  • Zhang L, Lu YT (2003) Calmodulin-binding protein kinases in plants. Trends Plant Sci 8:123–127

    PubMed  CAS  Google Scholar 

  • Zhang L, Liu BF, Liang S, Jones RL, Lu YT (2002) Molecular and biochemical characterization of a calcium/calmodulin-binding protein kinase from rice. Biochem J 368:145–157

    PubMed  CAS  Google Scholar 

  • Zhuang Y, Ren G, He C, Li X, Meng Q, Zhu C, Wang R, Zhang J (2010) Cloning and characterization of a maize cDNA encoding glutamate decarboxylase. Plant Mol Biol Rep 28:620–626

    CAS  Google Scholar 

  • Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial assistance provided by the Department of Biotechnology, Government of India, New Delhi. ASV is thankful to Council of Scientific and Industrial Research, Government of India, New Delhi for the award of Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhjeet Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Singh, P., Virdi, A.S. (2013). Ca2+, Calmodulin and Plant-Specific Calmodulin-Binding Proteins: Implications in Abiotic Stress Adaptation. In: Sarwat, M., Ahmad, A., Abdin, M. (eds) Stress Signaling in Plants: Genomics and Proteomics Perspective, Volume 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6372-6_1

Download citation

Publish with us

Policies and ethics