Skip to main content

Embryology of the Craniocervical Junction and Posterior Cranial Fossa

  • Chapter
  • First Online:
The Chiari Malformations

Abstract

The development of the craniocervical junction is a complex sequence that requires perfect arrangement between cranial and cervical components. The neural crest cells of the upper somites and the notochord are both important in the development of this region. Of particular significance is the proatlas. Recent molecular studies have increased our knowledge of the processes involved in the formation of the base of the skull and upper cervical spine. The orchestration of the developing rhombencephalon and craniocervical junction is critical in the proper adult neuro-osseous relationships. Derailment of these processes may result in hindbrain herniation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dockter JL. Sclerotome induction and differentiation. Curr Top Dev Biol. 2000;48:77–127.

    Article  PubMed  CAS  Google Scholar 

  2. Christ B, Huang R, Scaal M. Formation and differentiation of the avian sclerotome. Anat Embryol (Berl). 2004;208(5):333–50.

    Article  Google Scholar 

  3. Ebensperger C, Wilting J, Brand-Saberi B, Mizutani Y, Christ B, Balling R, et al. Pax-1, a regulator of sclerotome development is induced by notochord and floor plate signals in avian embryos. Anat Embryol (Berl). 1995;191(4):297–310.

    Article  CAS  Google Scholar 

  4. Fan CM, Tessier-Lavigne M. Patterning of mammalian somites by surface ectoderm and notochord: evidence for sclerotome induction by a hedgehog homolog. Cell. 1994;79(7):1175–86.

    Article  PubMed  CAS  Google Scholar 

  5. Sensenig EC. The early development of the human vertebral column. Contrib Embryol Carneg Inst. 1957;33:21–41.

    Google Scholar 

  6. Frazer JE. A manual of embryology. New York: William Wood and Company; 1931. p. 142–63.

    Google Scholar 

  7. Robinson A, editor. Cunningham’s textbook of anatomy. 5th ed. New York: William Wood and Company; 1918.

    Google Scholar 

  8. Dockter JL. Sclerotome induction and differentiation. In: Ordahl CP, editor. Somitogenesis: part 2. San Diego: Academic; 2000. p. 77–128.

    Google Scholar 

  9. O’Rahilly R, Müller F. The early development of the hypoglossal nerve and occipital somites in staged human embryos. Am J Anat. 1984;169(3):237–57.

    Article  PubMed  Google Scholar 

  10. Ganguly DN, Roy KK. A study on the cranio-­vertebral joint in the man. Anat Anz Bd. 1964;114:433–52.

    CAS  Google Scholar 

  11. Bailey RW, Sherk HH, Dunn EJ, et al., editors. The cervical spine – the cervical spine research society. Philadelphia: JB Lippincott; 1983.

    Google Scholar 

  12. Ludwig KS. Die frühentwicklung des atlas und der occipitalwirbel beim menschen. Acta Anat (Basel). 1957;80:444–61.

    Article  Google Scholar 

  13. Müller F, O’Rahilly R. Occipitocervical segmentation in staged human embryos. J Anat. 1994;185(Pt 2):251–8. Erratum in: J Anat 1995;186(Pt 3):661.

    PubMed  Google Scholar 

  14. Müller F, O’Rahilly R. Segmentation in staged human embryos: the occipitocervical region revisited. J Anat. 2003;203(3):297–315.

    Article  PubMed  Google Scholar 

  15. Tillmann B, Lorenz R. The stress at the human atlanto-occipital joint. I. the development of the occipital condyle. Anat Embryol (Berl). 1978;153(3):269–77.

    Article  Google Scholar 

  16. Madeline LA, Elster AD. Suture closure in the human chondrocranium: CT assessment. Radiology. 1995;196(3):747–56.

    PubMed  CAS  Google Scholar 

  17. Taitz C. Bony observations of some morphological variations and anomalies of the craniovertebral region. Clin Anat. 2000;13(5):354–60.

    Article  PubMed  CAS  Google Scholar 

  18. Prescher A, Brors D, Adam G. Anatomic and radiologic appearance of several variants of the craniocervical junction. Skull Base Surg. 1996;6(2):83–94.

    Article  PubMed  CAS  Google Scholar 

  19. Prescher A. The craniocervical junction in man, the osseous variations, their significance and differential diagnosis. Ann Anat. 1997;179(1):1–19.

    Article  PubMed  CAS  Google Scholar 

  20. Pang D, Thompson DN. Embryology and bony malformations of the craniovertebral junction. Childs Nerv Syst. 2011;27(4):523–64.

    Article  PubMed  Google Scholar 

  21. Oetteking B. On the morphological significance of certain cranio-vertebral variations. Anat Rec. 1923;25:339–53.

    Article  Google Scholar 

  22. Vasudeva N, Choudhry R. Precondylar tubercles on the basiocciput of adult human skulls. J Anat. 1996;188(Pt 1):207–10.

    PubMed  Google Scholar 

  23. Tubbs RS, Grabb P, Spooner A, Wilson W, Oakes WJ. The apical ligament: anatomy and functional significance. J Neurosurg. 2000;92(2 Suppl):197–200.

    PubMed  CAS  Google Scholar 

  24. Rao PV. Median (third) occipital condyle. Clin Anat. 2002;15(2):148–51.

    Article  PubMed  Google Scholar 

  25. Scheuer L, Black SM. The juvenile skeleton. San Diego: Elsevier Academic Press; 2004. p. 195.

    Google Scholar 

  26. Menezes AH, Fenoy KA. Remnants of occipital ­vertebrae: proatlas segmentation abnormalities. Neuro­surgery. 2009;64(5):945–53.

    Article  PubMed  Google Scholar 

  27. Goel A, Shah A. Unusual bone formation in the anterior rim of foramen magnum: cause, effect and treatment. Eur Spine J. 2010;19 Suppl 2:S162–4.

    Article  PubMed  Google Scholar 

  28. Xu S, Pang Q, Zhang K, Zhang H. Two patients with proatlas segmentation malformation. J Clin Neurosci. 2010;17(5):647–8.

    Article  PubMed  Google Scholar 

  29. Madeline LA, Elster AD. Postnatal development of the central skull base: normal variants. Radiology. 1995;196(3):757–63.

    PubMed  CAS  Google Scholar 

  30. Kruyff E. Transverse cleft in the basi-occiput. Acta Radiol Diagn (Stockh). 1967;6(1):41–8.

    CAS  Google Scholar 

  31. Johnson GF, Israel H. Basioccipital clefts. Radiology. 1979;133(1):101–3.

    PubMed  CAS  Google Scholar 

  32. Smoker WR. Craniovertebral junction: normal anatomy, craniometry, and congenital anomalies. Radiographics. 1994;14(2):255–77.

    PubMed  CAS  Google Scholar 

  33. Nishikawa M, Sakamoto H, Hakuba A, Nakanishi N, Inoue Y. Pathogenesis of Chiari malformation: a morphometric study of the posterior cranial fossa. J Neurosurg. 1997;86(1):40–7.

    Article  PubMed  CAS  Google Scholar 

  34. Noudel R, Jovenin N, Eap C, Scherpereel B, Pierot L, Rousseaux P. Incidence of basioccipital hypoplasia in Chiari malformation type I: comparative morphometric study of the posterior cranial fossa. Clinical article. J Neurosurg. 2009;111(5):1046–52.

    Article  PubMed  Google Scholar 

  35. Cankal F, Ugur HC, Tekdemir I, Elhan A, Karahan T, Sevim A. Fossa navicularis: anatomic variation at the skull base. Clin Anat. 2004;17(2):118–22.

    Article  PubMed  CAS  Google Scholar 

  36. Hauser G, De Stefano GF. Epigenetic variants of the human skull. Stuttgart: Schweizerbartsche; 1989.

    Google Scholar 

  37. Finke J. On the incidence of the pharyngeal ­tubercle, a roentgenological variant at the base of the skull [German]. Dtsch Z Nervenheilkd. 1964;186:186–9.

    PubMed  CAS  Google Scholar 

  38. Tubbs RS, Salter EG, Oakes WJ. Duplication of the occipital condyles. Clin Anat. 2005;18:92–5.

    Article  PubMed  Google Scholar 

  39. Kunicki J, Ciszek B. The clinical anatomy and the occipital condyle variants. Clin Anat. 2005;18(8):646–7.

    Article  PubMed  Google Scholar 

  40. Ohaegbulam C, Woodard EJ, Proctor M. Occipitocondylar hyperplasia: an unusual craniovertebral junction anomaly causing myelopathy. Case report. J Neurosurg. 2005;103(4 Suppl):379–81.

    PubMed  Google Scholar 

  41. Halanski MA, Iskandar B, Nemeth B, Noonan KJ. The coconut condyle: occipital condylar dysplasia causing torticollis and leading to c1 fracture. J Spinal Disord Tech. 2006;19(4):295–8.

    Article  PubMed  CAS  Google Scholar 

  42. Lang J. Skull base and related structures: atlas of clinical anatomy. 2nd ed. Stuttgart: Schattauer; 2001.

    Google Scholar 

  43. Anderson T. Paracondylar process: manifestation of an occipital vertebra. Int J Osteoarchaeol. 1996;6:195–201.

    Article  CAS  Google Scholar 

  44. Stratemeier PH, Jensen SR. Partial regressive occipital vertebra. Neuroradiology. 1980;19(1):47–9.

    PubMed  CAS  Google Scholar 

  45. Gladstone RJ, Erichsen-Powell W. Manifestation of occipital vertebrae, and fusion of the atlas with the occipital bone. J Anat Physiol. 1915;49(Pt 2):190–209.

    PubMed  CAS  Google Scholar 

  46. Prescher A. The craniocervical junctions and its variations. In: Voger R, Fanghanel J, Giebel J, editors. Aspects of teratology. vol 1. Proceedings on the 9th teratology symposium, Greifswald, Aug 30–Sept 1, 1995. Marburg: Tectum Verlag; 1996. p. 62–4.

    Google Scholar 

  47. Lakhtakia PK, Premsagar IC, Bisaria KK, Bisaria SD. A tubercle at the anterior margin of the foramen magnum. J Anat. 1991;177:209–10.

    PubMed  CAS  Google Scholar 

  48. Piersol GA, editor. Human anatomy including structure and development and practical considerations. 6th ed. Philadelphia: J.B. Lippincott Company; 1918.

    Google Scholar 

  49. Le Double AF. Traité des variations des os du crane de l’homme, et de leur signification au point de vue de l’anthropologie zoologique. Paris: Vigot Freres; 1903.

    Google Scholar 

  50. Caffey J. On the accessory ossicles of the supraoccipital bone: some newly recognized roentgen features of the normal infantile skull. Am J Roentgenol Radium Ther Nucl Med. 1953;70(3):401–12.

    PubMed  CAS  Google Scholar 

  51. Lochmuller CM, Marks MK, Mileusnic-Polchan D, Cogswell SC. Misidentification of a transverse occipital suture as a persistent mendosal suture. J Pediatr. 2011;159(5):876–7.

    PubMed  Google Scholar 

  52. Nayak SR, Krishnamurthy A, Madhan Kumar SJ, Prabhu LV, Jiji PJ, Pai MM, et al. The mendosal suture of the occipital bone: occurrence in Indian population, embryology and clinical significance. Surg Radiol Anat. 2007;29(4):329–32.

    Article  PubMed  Google Scholar 

  53. Tubbs RS, Salter EG, Oakes WJ. Does the mendosal suture exist in the adult? Clin Anat. 2007;20(2):124–5.

    Article  PubMed  Google Scholar 

  54. Menezes AH. Primary craniovertebral anomalies and the hindbrain herniation syndrome (Chiari I): data base analysis. Pediatr Neurosurg. 1995;23(5):260–9.

    Article  PubMed  CAS  Google Scholar 

  55. Csakany G. Proatlas manifestation as diagnostic problem [Hungarian]. Magy Radiol. 1957;9(4):216–20.

    PubMed  CAS  Google Scholar 

  56. Denisov SD, Kabak SL. Rare case of manifestation of a proatlas [Russian]. Arkh Anat Gistol Embriol. 1984;86(6):75–7.

    PubMed  CAS  Google Scholar 

  57. Tsuang FY, Chen JY, Wang YH, Lai DM. Neurological picture. Occipitocervical malformation with atlas duplication. J Neurol Neurosurg Psychiatry. 2011;82(10):1101–2.

    Article  PubMed  Google Scholar 

  58. Shoja MM, Loukas M, Tubbs RS. Persistence of proatlas in man (comment on “occipitocervical malformation with atlas duplication”). J Neurol Neurosurg Psychiatry. 2012. Available via http://jnnp.bmj.com/content/82/10/1101/reply. Accessed 2 Feb 2012.

  59. Gasser RF. Early formation of the basicranium in man. In: Bosma JF, editor. Symposium on development of the basicranium. Bethesda: Department of Health, Education and Welfare; 1976. p. 29–43.

    Google Scholar 

  60. Menezes AH. Craniocervical developmental anatomy and its implications. Childs Nerv Syst. 2008;24(10):1109–22.

    Article  PubMed  Google Scholar 

  61. Macalister A. Notes on the development and variations of the atlas. J Anat Physiol. 1893;27(Pt 4):519–42.

    PubMed  CAS  Google Scholar 

  62. Allen W. The varieties of the atlas in the human subject, and the homologies of its transverse processes. J Anat Physiol. 1879;14(Pt 1):18–27.

    PubMed  CAS  Google Scholar 

  63. Chopra JS, Sawhney IM, Kak VK, Khosla VK. Craniovertebral anomalies: a study of 82 cases. Br J Neurosurg. 1988;2(4):455–64.

    Article  PubMed  CAS  Google Scholar 

  64. Kalla AK, Khanna S, Singh IP, Sharma S, Schnobel R, Vogel F. A genetic and anthropological study of atlanto-occipital fusion. Hum Genet. 1989;81(2):105–12.

    Article  PubMed  CAS  Google Scholar 

  65. Bergman RA, Afifi AK, Miyauchi R. Cervical vertebrae. In: Illustrated encyclopedia of human anatomic variation. 1996. Available via: http://www.anatomyatlases.org/AnatomicVariants/SkeletalSystem/Text/CervicalVertebrae.shtml. Accessed 27 Feb 2012.

  66. Gholve PA, Hosalkar HS, Ricchetti ET, Pollock AN, Dormans JP, Drummond DS. Occipitalization of the atlas in children. Morphologic classification, associations, and clinical relevance. J Bone Joint Surg Am. 2007;89(3):571–8.

    Article  PubMed  Google Scholar 

  67. Kassim NM, Latiff AA, Das S, Ghafar NA, Suhaimi FH, Othman F, et al. Atlanto-occipital fusion: an osteological study with clinical implications. Bratisl Lek Listy. 2010;111(10):562–5.

    PubMed  CAS  Google Scholar 

  68. Tubbs RS, Lancaster JR, Mortazavi MM, Shoja MM, Chern JJ, Loukas M, et al. Morphometry of the outlet of the foramen magnum in crania with atlantooccipital fusion. J Neurosurg Spine. 2011;15(1):55–9.

    Article  PubMed  Google Scholar 

  69. Condie BG, Capecchi MR. Mice homozygous for a targeted disruption of Hoxd-3 (Hox-4.1) exhibit anterior transformations of the first and second cervical vertebrae, the atlas and the axis. Development. 1993;119(3):579–95.

    PubMed  CAS  Google Scholar 

  70. Ferrier DE, Holland PW. Ancient origin of the Hox gene cluster. Nat Rev Genet. 2001;2:33–8.

    Article  PubMed  CAS  Google Scholar 

  71. Burke AC, Nelson CE, Morgan BA, Tabin C. Hox genes and the evolution of vertebrate axial morphology. Development. 1995;121:333–46.

    PubMed  CAS  Google Scholar 

  72. Pourquié O, editor. Hox genes. San Diego: Academic; 2009.

    Google Scholar 

  73. Davies HW. Radiological changes associated with Arnold-Chiari malformation. Br J Radiol. 1967;40(472):262–9.

    Article  PubMed  CAS  Google Scholar 

  74. Friede H. Normal development and growth of the human neurocranium and cranial base. Scand J Plast Reconstr Surg. 1981;15(3):163–9.

    Article  PubMed  CAS  Google Scholar 

  75. Lemire RJ. Embryology of the skull. In: Cohen Jr MM, MacLean RE, editors. Craniosynostosis. Diagnosis, evaluation and management. 2nd ed. Oxford: Oxford University Press; 2000. p. 25–34.

    Google Scholar 

  76. Schäfer EA, Symington J, Bryce TH, editors. Quain’s elements of anatomy, Embryology, vol. 1. 11th ed. New York: Longmans, Green, and Co; 1908.

    Google Scholar 

  77. Parsons FG. Skull. In: Encyclopedia Britannica, vol. 25. 11th ed. New York: Encyclopedia Britannica Company; 1911. p. 196–200.

    Google Scholar 

  78. Kernan Jr JD. The chondrocranium of a 20 mm. Human embryo. J Morphol. 1916;27:605–46.

    Article  Google Scholar 

  79. Levi G. Beitrag lum studium der entwickelung des knorpeligen primordialcraniums des menschen. Arch Mikr Anat. 1900;55:341–414.

    Article  Google Scholar 

  80. Macklin CC. The skull of a human fetus of 43 millimeters greatest length. Contrib Embryol. 1921;48:57–103.

    Google Scholar 

  81. Müller F, O’Rahilly R. The human chondrocranium at the end of the embryonic period, proper, with particular reference to the nervous system. Am J Anat. 1980;159(1):33–58.

    Article  PubMed  Google Scholar 

  82. Niida S, Yamasaki A, Kodama H. Interference with interparietal growth in the human skull by the tectum synoticum posterior. J Anat. 1992;180(Pt 1):197–200.

    PubMed  Google Scholar 

  83. Hertwig O. Handbuch Der Vergleichenden Und Experimentellen Entwicklungslehre Der Wirbeltiere, Band II, Teil 2. Jena: G. Fischer; 1906. p. 824.

    Book  Google Scholar 

  84. Kjaer I. Ossification of the human fetal basicranium. J Craniofac Genet Dev Biol. 1990;10:29–38.

    PubMed  CAS  Google Scholar 

  85. Mall FP. On ossification centers in human embryos less than one hundred days old. Am J Anat. 1906;5:433–58.

    Article  Google Scholar 

  86. Jeffery N. A high-resolution MRI study of linear growth of the human fetal skull base. Neuroradiology. 2002;44(4):358–66.

    Article  PubMed  CAS  Google Scholar 

  87. McBratney-Owen B, Iseki S, Bamforth SD, Olsen BR, Morriss-Kay GM. Development and tissue origins of the mammalian cranial base. Dev Biol. 2008;322(1):121–32.

    Article  PubMed  CAS  Google Scholar 

  88. Gans C, Northcutt RG. Neural crest and the origin of vertebrates: a new head. Science. 1983;220(4594):268–73.

    Article  PubMed  CAS  Google Scholar 

  89. Choudhary AK, Jha B, Boal DK, Dias M. Occipital sutures and its variations: the value of 3D-CT and how to differentiate it from fractures using 3D-CT? Surg Radiol Anat. 2010;32(9):807–16.

    Article  PubMed  Google Scholar 

  90. Srivastava HC. Ossification of the membranous portion of the squamous part of the occipital bone in man. J Anat. 1992;180(Pt 2):219–24.

    PubMed  Google Scholar 

  91. Shapiro R, Robinson F. Embryogenesis of the human occipital bone. AJR Am J Roentgenol. 1976;126(5):1063–8.

    Article  PubMed  CAS  Google Scholar 

  92. Gayretli O, Gurses IA, Kale A, Aksu F, Ozturk A, Bayraktar B, et al. The mendosal suture. Br J Neuro­surg. 2011;25(6):730–3.

    Article  PubMed  Google Scholar 

  93. Balboni AL, Estenson TL, Reidenberg JS, Bergemann AD, Laitman JT. Assessing age-related ossification of the petro-occipital fissure: laying the foundation for understanding the clinicopathologies of the cranial base. Anat Rec A Discov Mol Cell Evol Biol. 2005;282(1):38–48.

    PubMed  Google Scholar 

  94. Srivastava HC. Development of ossification centres in the squamous portion of the occipital bone in man. J Anat. 1977;124(Pt 3):643–9.

    PubMed  CAS  Google Scholar 

  95. Koenigsberg RA, Vakil N, Hong TA, Htaik T, Faerber E, Maiorano T, et al. Evaluation of platybasia with MR imaging. AJNR Am J Neuroradiol. 2005;26(1):89–92.

    PubMed  Google Scholar 

  96. Schady W, Metcalfe RA, Butler P. The incidence of craniocervical bony anomalies in the adult Chiari malformation. J Neurol Sci. 1987;82(1–3):193–203.

    Article  PubMed  CAS  Google Scholar 

  97. Jeffery N. Cranial base angulation and growth of the human fetal pharynx. Anat Rec A Discov Mol Cell Evol Biol. 2005;284(1):491–9.

    PubMed  Google Scholar 

  98. Jeffery N. Differential regional brain growth and rotation of the prenatal human tentorium cerebelli. J Anat. 2002;200(Pt 2):135–44.

    Article  PubMed  Google Scholar 

  99. Jeffery N, Spoor F. Brain size and the human cranial base: a prenatal perspective. Am J Phys Anthropol. 2002;118(4):324–40.

    Article  PubMed  Google Scholar 

  100. Hodak JA, Mamourian A, Dean BL. Radiologic evaluation of the craniovertebral junction. In: Dickman CA, Spetzler RF, Sonntag VK, editors. Surgery of the craniovertebral junction. New York: Thiema; 1998.

    Google Scholar 

  101. Bares L. Basilar impression and the so-called ‘associated anomalies’. Eur Neurol. 1975;13(2):92–100.

    Article  PubMed  CAS  Google Scholar 

  102. Roth M. Cranio-cervical growth collision: another explanation of the Arnold-Chiari malformation and of basilar impression. Neuroradiology. 1986;28(3):187–94.

    Article  PubMed  CAS  Google Scholar 

  103. Hinck VC, Hopkins CE, Savara BS. Diagnostic criteria of basilar impression. Radiology. 1961;76:572–85.

    PubMed  CAS  Google Scholar 

  104. Smith JS, Shaffrey CI, Abel MF, Menezes AH. Basilar invagination. Neurosurgery. 2010;66(3 Suppl):39–47.

    Article  PubMed  Google Scholar 

  105. Pearce JM. Platybasia and basilar invagination. Eur Neurol. 2007;58(1):62–4.

    Article  PubMed  CAS  Google Scholar 

  106. Goel A, Bhatjiwale M, Desai K. Basilar invagination: a study based on 190 surgically treated patients. J Neurosurg. 1998;88(6):962–8.

    Article  PubMed  CAS  Google Scholar 

  107. Caetano de Barros M, Farias W, Ataíde L, Lins S. Basilar impression and Arnold-Chiari malformation. A study of 66 cases. J Neurol Neurosurg Psychiatry. 1968;31(6):596–605.

    Article  PubMed  CAS  Google Scholar 

  108. Paradis RW, Sax DS. Familial basilar impression. Neurology. 1972;22:554–60.

    Article  PubMed  CAS  Google Scholar 

  109. Karagöz F, Izgi N, Kapíjcíjoğlu Sencer S. Morphometric measurements of the cranium in patients with Chiari type I malformation and comparison with the normal population. Acta Neurochir (Wien). 2002;144(2):165–71.

    Article  Google Scholar 

  110. Krogness KG. Posterior fossa measurements. I. The normal size of the posterior fossa. Pediatr Radiol. 1978;6(4):193–7.

    Article  PubMed  CAS  Google Scholar 

  111. Greenlee J, Garell PC, Stence N, Menezes AH. Comprehensive approach to Chiari malformation in pediatric patients. Neurosurg Focus. 1999;6(6):e4.

    Article  PubMed  CAS  Google Scholar 

  112. Vega A, Quintana F, Berciano J. Basichondrocranium anomalies in adult Chiari type I malformation: a morphometric study. J Neurol Sci. 1990;99(2–3):137–45.

    Article  PubMed  CAS  Google Scholar 

  113. Shah A, Goel A. Clival dysgenesis associated with Chiari Type 1 malformation and syringomyelia. J Clin Neurosci. 2010;17(3):400–1.

    Article  PubMed  Google Scholar 

  114. Aydin S, Hanimoglu H, Tanriverdi T, Yentur E, Kaynar MY. Chiari type I malformations in adults: a morphometric analysis of the posterior cranial fossa. Surg Neurol. 2005;64(3):237–41.

    Article  PubMed  Google Scholar 

  115. Dufton JA, Habeeb SY, Heran MK, Mikulis DJ, Islam O. Posterior fossa measurements in patients with and without Chiari I malformation. Can J Neurol Sci. 2011;38(3):452–5.

    PubMed  Google Scholar 

  116. Milhorat TH, Chou MW, Trinidad EM, Kula RW, Mandell M, Wolpert C, et al. Chiari I malformation redefined: clinical and radiographic findings for 364 sympto­matic patients. Neurosurgery. 1999;44(5):1005–17.

    Article  PubMed  CAS  Google Scholar 

  117. Dagtekin A, Avci E, Kara E, Uzmansel D, Dagtekin O, Koseoglu A, et al. Posterior cranial fossa morphometry in symptomatic adult Chiari I malformation patients: comparative clinical and anatomical study. Clin Neurol Neurosurg. 2011;113(5):399–403.

    Article  PubMed  Google Scholar 

  118. Marin-Padilla M, Marin-Padilla TM. Morphogenesis of experimentally induced Arnold–Chiari malformation. J Neurol Sci. 1981;50(1):29–55.

    Article  PubMed  CAS  Google Scholar 

  119. Bailey FR, Miller AM. Textbook of human embryology. 4th ed. New York: William Wood and Company; 1921. p. 495–500.

    Google Scholar 

  120. Dow RS. The evolution and anatomy of the cerebellum. Biol Rev. 1942;17:179–220.

    Article  Google Scholar 

  121. Hamilton WJ, Boyd JD, Mossman HW. Human embryology. 2nd ed. Baltimore: The Williams & Wilkins Company; 1952. p. 285–9.

    Google Scholar 

  122. Heisler JC. A textbook of embryology. 3rd edn. Philadelphia: W.B. Saunders Company; 1907. p. 287–8.

    Google Scholar 

  123. Hochstetter F. Beitrage zur Entwicklungsgeschichte des menschlichen Gehirns: Teil I. Wien: Deuticke; 1919.

    Google Scholar 

  124. Keibel F, Mall FP. Manual of human embryology, vol. 2. Philadelphia: J.B. Lippincott Company; 1912. p. 67–74.

    Google Scholar 

  125. Keith A. Human embryology and morphology. 6th ed. Baltimore: The Williams and Wilkins Company; 1948. p. 138–46.

    Google Scholar 

  126. Minot CS. Human embryology. New York: William Wood and Company; 1892. p. 593–705.

    Google Scholar 

  127. Patten BM. Human embryology. 3rd ed. New York: McGrew-Hill Book Company; 1968. p. 280–2.

    Google Scholar 

  128. Stroud BB. The morphology of the ape cerebellum. Proc Ass Am Anat. 1897:107–26; Dow, 1942.

    Google Scholar 

  129. Babcook CJ, Chong BW, Salamat MS, Ellis WG, Goldstein RB. Sonographic anatomy of the developing cerebellum: normal embryology can resemble pathology. AJR Am J Roentgenol. 1996;166:427–33.

    Article  PubMed  CAS  Google Scholar 

  130. Chong BW, Babcook CJ, Pang D, Ellis WG. A magnetic resonance template for normal cerebellar development in the human fetus. Neurosurgery. 1997;41(4):924–8.

    Article  PubMed  CAS  Google Scholar 

  131. Limperopoulos C, Soul JS, Gauvreau K, Huppi PS, Warfield SK, Bassan H, et al. Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics. 2005;115(3):688–95.

    Article  PubMed  Google Scholar 

  132. Liu F, Zhang Z, Lin X, Teng G, Meng H, Yu T, et al. Development of the human fetal cerebellum in the second trimester: a post mortem magnetic resonance imaging evaluation. J Anat. 2011;219:582–8.

    Article  PubMed  Google Scholar 

  133. Malinger G, Ginath S, Lerman-Sagie T, Watemberg N, Lev D, Glezerman M. The fetal cerebellar vermis: normal development as shown by transvaginal ultrasound. Prenat Diagn. 2001;21:687–92.

    Article  PubMed  CAS  Google Scholar 

  134. Lemire RJ, Looser JD, Leech RW, Alvord EC. Normal and abnormal development of the human nervous system. Hagerstown: Harper & Row; 1975.

    Google Scholar 

  135. Anthoney TR. Neuroanatomy and the neurologic exam: a thesaurus of synonyms, similar-sounding non-synonyms, and terms of variable meaning. Boca Raton: CRC Press; 1994. p. 137.

    Google Scholar 

  136. Tagliavini F, Pietrini V. On the variability of the human flocculus and paraflocculus accessorius. J Hirnforsch. 1984;25:163–70.

    PubMed  CAS  Google Scholar 

  137. Weed LH. The development of the cerebrospinal spaces in pig and in man. Contrib Embryol. 1917;5:1–116.

    Google Scholar 

  138. Wilson JT. On the nature and mode of origin of the foramen of Magendie. J Anat. 1937;71:423–8.

    PubMed  CAS  Google Scholar 

  139. Blake JA. The roof and lateral recesses of the fourth ventricle, considered morphologically and embryologically. J Comp Neurol. 1900;10:79–108.

    Article  Google Scholar 

  140. Padget DH. Development of so-called dysraphism; with embryologic evidence of clinical Arnold-Chiari and Dandy-Walker malformations. Johns Hopkins Med J. 1972;130(3):127–65.

    PubMed  CAS  Google Scholar 

  141. van Hoytema GJ, van den Berg R. Embryological studies of the posterior fossa in connection with Arnold-Chiari malformation. Dev Med Child Neurol. 1966;8 Suppl 11:61–76.

    Google Scholar 

  142. Pilu G, Romero R, Reece EA, Goldstein I, Hobbins JC, Bovicelli L. Subnormal cerebellum in fetuses with spina bifida. Am J Obstet Gynecol. 1988;158(5):1052–6.

    PubMed  CAS  Google Scholar 

  143. Salman MS, Dennis M, Sharpe JA. The cerebellar dysplasia of Chiari II malformation as revealed by eye movements. Can J Neurol Sci. 2009;36(6):713–24.

    PubMed  Google Scholar 

  144. Juranek J, Dennis M, Cirino PT, El-Messidi L, Fletcher JM. The cerebellum in children with spina bifida and Chiari II malformation: quantitative volumetrics by region. Cerebellum. 2010;9(2):240–8.

    Article  PubMed  Google Scholar 

  145. Sener RN, Dzelzite S. Rhombencephalosynapsis and a Chiari II malformation. J Comput Assist Tomogr. 2003;27(2):257–9.

    Article  PubMed  CAS  Google Scholar 

  146. Utsunomiya H, Takano K, Ogasawara T, Hashimoto T, Fukushima T, Okazaki M. Rhomben­cephalosynapsis: cerebellar embryogenesis. AJNR Am J Neuroradiol. 1998;19(3):547–9.

    PubMed  CAS  Google Scholar 

  147. Gardner WJ, Goodall RJ. The surgical treatment of Arnold-Chiari malformation in adults; an explanation of its mechanism and importance of encephalography in diagnosis. J Neurosurg. 1950;7(3):199–206.

    Article  PubMed  CAS  Google Scholar 

  148. Gardner WJ, Abdullah AF, McCormack LJ. The varying expressions of embryonal atresia of the fourth ventricle in adults: Arnold-Chiari malformation, Dandy-Walker syndrome, arachnoid cyst of the cerebellum, and syringomyelia. J Neurosurg. 1957;14(6):591–605.

    Article  PubMed  CAS  Google Scholar 

  149. Tubbs RS, Smyth MD, Wellons 3rd JC, Oakes WJ. Arachnoid veils and the Chiari I malformation. J Neurosurg. 2004;100(5 Suppl Pediatrics):465–7.

    PubMed  Google Scholar 

  150. Klintworth GK. The ontogeny and growth of the human tentorium cerebelli. Anat Rec. 1967;158(4):433–41.

    Article  PubMed  CAS  Google Scholar 

  151. Klintworth GK. The comparative anatomy and phylogeny of the tentorium cerebelli. Anat Rec. 1968;160(3):635–42.

    Article  PubMed  CAS  Google Scholar 

  152. Peach B. Arnold-Chiari malformation: anatomic features of 20 cases. Arch Neurol. 1965;12:613–21.

    Article  PubMed  CAS  Google Scholar 

  153. Gardner WJ. The dysraphic states. Amsterdam: Excerpta Medica; 1973.

    Google Scholar 

  154. Stovner LJ, Bergan U, Nilsen G, Sjaastad O. Posterior cranial fossa dimensions in the Chiari I malformation: relation to pathogenesis and clinical presentation. Neuroradiology. 1993;35:113–8.

    Article  PubMed  CAS  Google Scholar 

  155. Furtado SV, Reddy K, Hegde AS. Posterior fossa morphometry in symptomatic pediatric and adult Chiari I malformation. J Clin Neurosci. 2009;16:1449–54.

    Article  PubMed  Google Scholar 

  156. Nyland H, Krogness KG. Size of posterior fossa in Chiari type 1 malformation in adults. Acta Neurochir (Wien). 1978;40:233–42.

    Article  CAS  Google Scholar 

  157. Burgener FA, Meyers SP, Tan RK, Zaunbauer W. Differential diagnosis in magnetic resonance imaging. New York: Thieme; 2002.

    Google Scholar 

  158. McLone DG, Knepper PA. The cause of Chiari II malformation: a unified theory. Pediatr Neurosci. 1989;15(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  159. Grant RA, Heuer GG, Carrión GM, Adzick NS, Schwartz ES, Stein SC, et al. Morphometric analysis of posterior fossa after in utero myelomeningocele repair. J Neurosurg Pediatr. 2011;7(4):362–8.

    Article  PubMed  Google Scholar 

  160. Hochstetter F. Über die Entwicklung und Differenzierung de Hüllen des Menschlichen Hehirns. Morph Jahrb. 1939;83:359–494.

    Google Scholar 

  161. Spoor F, Zonneveld F. Comparative review of the human bony labyrinth. Am J Phys Anthropol. 1998;Suppl 27:211–51.

    Article  PubMed  CAS  Google Scholar 

  162. Butler H. The development of certain human dural venous sinuses. J Anat. 1957;91(4):510–26.

    PubMed  CAS  Google Scholar 

  163. Moss ML, Noback CR, Robertson GG. Growth of certain human fetal cranial bones. Am J Anat. 1956;98(2):191–204.

    Article  PubMed  CAS  Google Scholar 

  164. Lee SK, Kim YS, Jo YA, Seo JW, Chi JG. Prenatal development of cranial base in normal Korean fetuses. Anat Rec. 1996;246(4):524–34.

    Article  PubMed  CAS  Google Scholar 

  165. Kettunen P, Nie X, Kvinnsland IH, Luukko K. Histological development and dynamic expression of Bmp2-6 mRNAs in the embryonic and postnatal mouse cranial base. Anat Rec A Discov Mol Cell Evol Biol. 2006;288(12):1250–8.

    PubMed  Google Scholar 

  166. Matsushita T, Wilcox WR, Chan YY, Kawanami A, Bükülmez H, Balmes G, et al. FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway. Hum Mol Genet. 2009;18(2):227–40.

    Article  PubMed  CAS  Google Scholar 

  167. Shum L, Wang X, Kane AA, Nuckolls GH. BMP4 promotes chondrocyte proliferation and hypertrophy in the endochondral cranial base. Int J Dev Biol. 2003;47(6):423–31.

    PubMed  CAS  Google Scholar 

  168. Rice DP, Rice R, Thesleff I. Fgfr mRNA isoforms in craniofacial bone development. Bone. 2003;33(1):14–27.

    Article  PubMed  CAS  Google Scholar 

  169. Galford JE, McElhaney JH. A viscoelastic study of scalp, brain, and dura. J Biomech. 1970;3(2):211–21.

    Article  PubMed  CAS  Google Scholar 

  170. Twomey C, Tsui BC. Complications of epidural blockade. In: Finucane BT, editor. Complications of regional anesthesia. 2nd ed. New York: Springer; 2007. p. 167–94.

    Chapter  Google Scholar 

  171. Kargapol’tseva GV. The strength and elasticity of the dura mater Russian. Vopr Neirokhir. 1975;1:53–4.

    PubMed  Google Scholar 

  172. Lundon K. The effect of mechanical load on soft connective tissue. In: Hammer WI, editor. Functional soft-tissue examination and treatment by manual methods. Sudbury: Jones and Bartlett Publishers, Inc; 2007. p. 15–30.

    Google Scholar 

  173. Alter MJ. Science of flexibility. 3rd ed. Champaign: Human Kinetics; 2004.

    Google Scholar 

  174. Raisz LG, Kream BE. Regulation of bone formation. N Engl J Med. 1983;309(1):29–35.

    Article  PubMed  CAS  Google Scholar 

  175. Raisz LG, Kream BE. Regulation of bone formation (second of two parts). N Engl J Med. 1983;309(2):83–9.

    Article  PubMed  CAS  Google Scholar 

  176. Raisz LG. Hormonal regulation of bone growth and remodelling. Ciba Found Symp. 1988;136:226–38.

    PubMed  CAS  Google Scholar 

  177. Lombardi G, Di Somma C, Rubino M, Faggiano A, Vuolo L, Guerra E, et al. The roles of parathyroid hormone in bone remodeling: prospects for novel therapeutics. J Endocrinol Invest. 2011;34(7 Suppl):18–22.

    PubMed  CAS  Google Scholar 

  178. Ohlsson C, Bengtsson BA, Isaksson OG, Andreassen TT, Slootweg MC. Growth hormone and bone. Endocr Rev. 1998;19(1):55–79.

    Article  PubMed  CAS  Google Scholar 

  179. Wit JM, Camacho-Hübner C. Endocrine regulation of longitudinal bone growth. Endocr Dev. 2011;21:30–41.

    Article  PubMed  CAS  Google Scholar 

  180. Ahmed M, Sarwar M, Ahmed I, Qureshi GA, Makhdoom A, Parvez SH. Effect of carbimazole induced hypothyroidism and thyroxine replacement on the growth of the long bones in albino rats of different age groups. Neuro Endocrinol Lett. 2007;28(4):484–8.

    PubMed  Google Scholar 

  181. Takano T, Takigawa M, Shirai E, Nakagawa K, Sakuda M, Suzuki F. The effect of parathyroid hormone (1–34) on cyclic AMP level, ornithine decarboxylase activity, and glycosaminoglycan synthesis of chondrocytes from mandibular condylar cartilage, nasal septal cartilage, and spheno-occipital synchondrosis in culture. J Dent Res. 1987;66(1):84–7.

    Article  PubMed  CAS  Google Scholar 

  182. Takigawa M, Takano T, Nakagawa K, Sakuda M, Suzuki F. Hydrocortisone stimulation of proliferation and glycosaminoglycan synthesis in rabbit craniofacial chondrocytes in vitro. Arch Oral Biol. 1988;33(12):893–9.

    Article  PubMed  CAS  Google Scholar 

  183. Takano-Yamamoto T, Soma S, Kyung HM, Nakagawa K, Yamashiro T, Sakuda M. Differential effects of 1 alpha, 25-dihydroxycholecalciferol and 24R,25-dihydroxycholecalciferol on the proliferation and the differentiated phenotype of rabbit craniofacial chondrocytes in primary culture. J Osaka Univ Dent Sch. 1992;32:51–9.

    PubMed  CAS  Google Scholar 

  184. Tubbs RS, Wellons 3rd JC, Smyth MD, Bartolucci AA, Blount JP, Oakes WJ, et al. Children with growth hormone deficiency and Chiari I malformation: a morphometric analysis of the posterior cranial fossa. Pediatr Neurosurg. 2003;38(6):324–8.

    Article  PubMed  Google Scholar 

  185. Tubbs RS, Webb D, Abdullatif H, Conklin M, Doyle S, Oakes WJ. Posterior cranial fossa volume in patients with rickets: insights into the increased occurrence of Chiari I malformation in metabolic bone disease. Neurosurgery. 2004;55(2):380–3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Shane Tubbs MS, PA-C, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shoja, M.M., Tubbs, R.S., Oakes, W.J. (2013). Embryology of the Craniocervical Junction and Posterior Cranial Fossa. In: Tubbs, R., Oakes, W. (eds) The Chiari Malformations. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6369-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6369-6_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6368-9

  • Online ISBN: 978-1-4614-6369-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics