Skip to main content

Non-Hindbrain-Related Syringomyelia

  • Chapter
  • First Online:
The Chiari Malformations
  • 2145 Accesses

Abstract

Syringomyelia is not a disease in its own right but a manifestation of another disease process, which incorporates an obstruction of cerebrospinal fluid (CSF) flow in the spinal canal, tethering of the spinal cord, or an intramedullary tumor. Whenever a syrinx is demonstrated, the clinical examination and the analysis of the patient’s history as well as neuroradiological imaging have to concentrate on identifying the underlying cause of the syrinx. If the cause of syringomyelia can be identified and treated successfully, the syrinx will regress and clinical symptoms will improve or remain stable for the future. Whereas diagnosis and treatment of Chiari malformations and intramedullary tumors are well established, the significance of spinal arachnopathies for development and successful treatment of syringomyelia is still not widely recognized. This chapter describes diagnostic and management algorithms as well as results of treatment for patients with syringomyelia related to spinal arachnopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olivier A, Tran Quan VAN. A case of monstrous post-traumatic hypertrophy of the foot, of true syringomyelic type. J Radiol Electrol Arch Electr Medicale. 1955;36(9–10):808–10.

    PubMed  CAS  Google Scholar 

  2. Klekamp J. The pathophysiology of syringomyelia – historical overview and current concept. Acta Neurochir (Wien). 2002;144(7):649–64.

    Article  CAS  Google Scholar 

  3. Greitz D. Unraveling the riddle of syringomyelia. Neurosurg Rev. 2006;29(4):251–63; discussion 264.

    Article  PubMed  Google Scholar 

  4. Lohle PN, Wurzer HA, Hoogland PH, Seelen PJ, Go KG. The pathogenesis of syringomyelia in spinal cord ependymoma. Clin Neurol Neurosurg. 1994;96(4):323–6.

    Article  PubMed  CAS  Google Scholar 

  5. Klekamp J, Samii M. Surgery of spinal tumors. Heidelberg: Springer; 2007.

    Google Scholar 

  6. Klekamp J, Völkel K, Bartels CJ, Samii M. Disturbances of cerebrospinal fluid flow attributable to arachnoid scarring cause interstitial edema of the cat spinal cord. Neurosurgery. 2001;48(1):174–85; discussion 185–6.

    PubMed  CAS  Google Scholar 

  7. Bilston LE, Fletcher DF, Stoodley MA. Focal spinal arachnoiditis increases subarachnoid space pressure: a computational study. Clin Biomech (Bristol, Avon). 2006;21(6):579–84.

    Article  CAS  Google Scholar 

  8. Klekamp J, Samii M, Tatagiba M, Sepehrnia A. Syringomyelia in association with tumours of the posterior fossa. Pathophysiological considerations, based on observations on three related cases. Acta Neurochir (Wien). 1995;137(1–2):38–43.

    Article  CAS  Google Scholar 

  9. Brodbelt AR, Stoodley MA, Watling AM, Tu J, Jones NR. Fluid flow in an animal model of post-traumatic syringomyelia. Eur Spine J. 2003;12(3):300–6.

    PubMed  Google Scholar 

  10. Bilston LE, Fletcher DF, Brodbelt AR, Stoodley MA. Arterial pulsation-driven cerebrospinal fluid flow in the perivascular space: a computational model. Comput Methods Biomech Biomed Engin. 2003;6(4):235–41.

    Article  PubMed  Google Scholar 

  11. Stoodley MA, Gutschmidt B, Jones NR. Cerebrospinal fluid flow in an animal model of noncommunicating syringomyelia. Neurosurgery. 1999;44(5):1065–75; discussion 1075–6.

    Article  PubMed  CAS  Google Scholar 

  12. Stoodley MA, Jones NR, Yang L, Brown CJ. Mechanisms underlying the formation and enlargement of noncommunicating syringomyelia: experimental studies. Neurosurg Focus. 2000;8(3):E2.

    Article  PubMed  CAS  Google Scholar 

  13. Fischbein NJ, Dillon WP, Cobbs C, Weinstein PR. The “presyrinx” state: a reversible myelopathic condition that may precede syringomyelia. AJNR Am J Neuroradiol. 1999;20(1):7–20.

    PubMed  CAS  Google Scholar 

  14. Milhorat TH, Capocelli Jr AL, Kotzen RM, Bolognese P, Heger IM, Cottrell JE. Intramedullary pressure in syringomyelia: clinical and pathophysiological correlates of syrinx distension. Neurosurgery. 1997;41(5):1102–10.

    Article  PubMed  CAS  Google Scholar 

  15. Tobimatsu Y, Nihei R, Kimura T, Suyama T, Tobimatsu H. A quantitative analysis of cerebrospinal fluid flow in posttraumatic syringomyelia. Nippon Seikeigeka Gakkai Zasshi. 1991;65(8):505–16.

    PubMed  CAS  Google Scholar 

  16. Aghakhani N, Baussart B, David P, et al. Surgical treatment of posttraumatic syringomyelia. Neurosurgery. 2010;66(6):1120–7; discussion 1127.

    Article  PubMed  Google Scholar 

  17. Goldstein B, Hammond MC, Stiens SA, Little JW. Posttraumatic syringomyelia: profound neuronal loss, yet preserved function. Arch Phys Med Rehabil. 1998;79(1):107–12.

    Article  PubMed  CAS  Google Scholar 

  18. Squier MV, Lehr RP. Post-traumatic syringomyelia. J Neurol Neurosurg Psychiatry. 1994;57(9):1095–8.

    Article  PubMed  CAS  Google Scholar 

  19. Reddy KK, Del Bigio MR, Sutherland GR. Ultrastructure of the human posttraumatic syrinx. J Neurosurg. 1989;71(2):239–43.

    Article  PubMed  CAS  Google Scholar 

  20. Eneling J, Bostrom S, Rossitti S. Subarachnoid Hemorrhage-associated Arachnoiditis and Syringo­myelia. Clin Neuroradiol. 2011;22(2):169–73.

    Google Scholar 

  21. Inoue Y, Nemoto Y, Ohata K, et al. Syringomyelia associated with adhesive spinal arachnoiditis: MRI. Neuroradiology. 2001;43(4):325–30.

    Article  PubMed  CAS  Google Scholar 

  22. Falci SP, Indeck C, Lammertse DP. Posttraumatic spinal cord tethering and syringomyelia: surgical treatment and long-term outcome. J Neurosurg Spine. 2009;11(4):445–60.

    Article  PubMed  Google Scholar 

  23. Hirai T, Korogi Y, Shigematsu Y, et al. Evaluation of syringomyelia with three-dimensional constructive interference in a steady state (CISS) sequence. J Magn Reson Imaging. 2000;11(2):120–6.

    Article  PubMed  CAS  Google Scholar 

  24. Kaynar MY, Kocer N, Gencosmanoglu BE, Hanci M. Syringomyelia–as a late complication of tuberculous meningitis. Acta Neurochir (Wien). 2000;142(8):935–8; discussion 938–9.

    Article  CAS  Google Scholar 

  25. Kubota M, Shin M, Taniguchi M, Terao T, Nakauchi J, Takahashi H. Syringomyelia caused by intrathecal remnants of oil-based contrast medium. J Neurosurg Spine. 2008;8(2):169–73.

    Article  PubMed  Google Scholar 

  26. Klekamp J, Samii M. Syringomyelia – diagnosis and treatment. Heidelberg: Springer; 2001.

    Google Scholar 

  27. Klekamp J, Batzdorf U, Samii M, Bothe HW. Treatment of syringomyelia associated with arachnoid scarring caused by arachnoiditis or trauma. J Neurosurg. 1997;86(2):233–40.

    Article  PubMed  CAS  Google Scholar 

  28. Morisako H, Takami T, Yamagata T, Chokyu I, Tsuyuguchi N, Ohata K. Focal adhesive arachnoiditis of the spinal cord: Imaging diagnosis and surgical resolution. J Craniovertebr Junction Spine. 2011;1(2):100–6.

    Google Scholar 

  29. Parker F, Aghakhani N, Tadie M. Non-traumatic arachnoiditis and syringomyelia. A series of 32 cases. Neurochirurgie. 1999;45 Suppl 1:67–83.

    PubMed  Google Scholar 

  30. Nicholas DS, Weller RO. The fine anatomy of the human spinal meninges. A light and scanning electron microscopy study. J Neurosurg. 1988;69(2):276–82.

    Article  PubMed  CAS  Google Scholar 

  31. Suzuki S, Chiba Y, Hidaka K, Nishimura S, Noji M. A new operative technique of posttraumatic syringomyelia: thecoperitoneal shunt. No Shinkei Geka. 1998;26(6):541–6.

    PubMed  CAS  Google Scholar 

  32. Vassilouthis J, Papandreou A, Anagnostaras S. Thecoperitoneal shunt for post-traumatic syringomyelia. J Neurol Neurosurg Psychiatry. 1994;57(6):755–6.

    Article  PubMed  CAS  Google Scholar 

  33. Vengsarkar US, Panchal VG, Tripathi PD, et al. Percutaneous thecoperitoneal shunt for syringomyelia. Report of three cases. J Neurosurg. 1991;74(5):827–31.

    Article  PubMed  CAS  Google Scholar 

  34. Lam S, Batzdorf U, Bergsneider M. Thecal shunt placement for treatment of obstructive primary syringomyelia. J Neurosurg Spine. 2008;9(6):581–8.

    Article  PubMed  Google Scholar 

  35. Oluigbo CO, Thacker K, Flint G. The role of lumboperitoneal shunts in the treatment of syringomyelia. J Neurosurg Spine. 2010;13(1):133–8.

    Article  PubMed  Google Scholar 

  36. Williams B, Sgouros S, Nenji E. Cerebrospinal fluid drainage for syringomyelia. Eur J Pediatr Surg. 1995;5 Suppl 1:27–30.

    Article  PubMed  Google Scholar 

  37. Piatt Jr JH. Progressive syringomyelia controlled by treatment of associated hydrocephalus in an infant with birth injury. Case report. J Neurosurg. 2005;103(2 Suppl):198–202.

    PubMed  Google Scholar 

  38. Laxton AW, Perrin RG. Cordectomy for the treatment of posttraumatic syringomyelia. Report of four cases and review of the literature. J Neurosurg Spine. 2006;4(2):174–8.

    Article  PubMed  Google Scholar 

  39. Sgouros S, Williams B. Management and outcome of posttraumatic syringomyelia. J Neurosurg. 1996;85(2):197–205.

    Article  PubMed  CAS  Google Scholar 

  40. Williams B. Post-traumatic syringomyelia, an update. Paraplegia. 1990;28(5):296–313.

    Article  PubMed  CAS  Google Scholar 

  41. Kasai Y, Kawakita E, Morishita K, Uchida A. Cordectomy for post-traumatic syringomyelia. Acta Neurochir (Wien). 2008;150(1):83–6; discussion 86.

    Article  CAS  Google Scholar 

  42. Gautschi OP, Seule MA, Cadosch D, et al. Health-related quality of life following spinal cordectomy for syringomyelia. Acta Neurochir (Wien). 2011;153(3):575–9.

    Article  Google Scholar 

  43. Ewelt C, Stalder S, Steiger HJ, Hildebrandt G, Heilbronner R. Impact of cordectomy as a treatment option for posttraumatic and non-posttraumatic syringomyelia with tethered cord syndrome and myelopathy. J Neurosurg Spine. 2010;13(2):193–9.

    Article  PubMed  Google Scholar 

  44. Roser F, Ebner FH, Sixt C, Hagen JM, Tatagiba MS. Defining the line between hydromyelia and syringomyelia. A differentiation is possible based on electrophysiological and magnetic resonance imaging studies. Acta Neurochir (Wien). 2010;152(2):213–9.

    Article  Google Scholar 

  45. Holly LT, Batzdorf U. Slitlike syrinx cavities: a persistent central canal. J Neurosurg Spine. 2002;97(2):161–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Klekamp MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Klekamp, J. (2013). Non-Hindbrain-Related Syringomyelia. In: Tubbs, R., Oakes, W. (eds) The Chiari Malformations. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6369-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6369-6_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6368-9

  • Online ISBN: 978-1-4614-6369-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics