Skip to main content

Immune System and Atopic Disorders

  • Chapter
  • First Online:
  • 758 Accesses

Part of the book series: SpringerBriefs in Genetics ((BRIEFSGENETICS))

Abstract

The terms “complex” or “multifactorial” are used interchangeably to refer to diseases that are obviously not the result of a single mutation or an environmental aggression. The genetic load of these diseases is unquestionable, and numerous studies have demonstrated both its heritability and the influence of certain anti-inflammatory factors, but both have proved to be insufficient to the complete understanding of their prevalence and patterns of heritability. Allergic rhinitis, atopic dermatitis, allergic asthma, food allergy, anaphylaxis, or contact dermatitis are examples of complex or multifactorial diseases for which much is yet to be understood.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Devereux G. The increase in the prevalence of asthma and allergy: food for thought. Nat Rev Immunol. 2006;6(11):869–74. doi:10.1038/nri1958.

    Article  PubMed  CAS  Google Scholar 

  2. Vercelli D. Genetics, epigenetics, and the environment: switching, buffering, releasing. J Allergy Clin Immunol. 2004;113(3):381–386. doi:10.1016/j.jaci.2004.01.752.

    Google Scholar 

  3. Edgecombe K, Latter S, Peters S, Roberts G. Health experiences of adolescents with uncontrolled severe asthma. Arch Dis Child. 2010;95(12):985–91. doi:10.1136/adc.2009.171579.

    Article  PubMed  Google Scholar 

  4. Peters SP, Ferguson G, Deniz Y, Reisner C. Uncontrolled asthma: a review of the prevalence, disease burden and options for treatment. Respir Med. 2006;100(7):1139–51. doi:10.1016/j.rmed.2006.03.031.

    Article  PubMed  Google Scholar 

  5. Matasar MJ, Neugut AI. Epidemiology of anaphylaxis in the United States. Curr Allergy Asthma Rep. 2003;3(1):30–5.

    Article  PubMed  Google Scholar 

  6. Neugut AI, Ghatak AT, Miller RL. Anaphylaxis in the United States: an investigation into its epidemiology. Arch Intern Med. 2001;161(1):15–21.

    Article  PubMed  CAS  Google Scholar 

  7. Preparing a healthcare workforce for the 21st century: the challenge of chronic conditions. Chronic illness. 2005;1(2):99–100.

    Google Scholar 

  8. Ninan TK, Russell G. Respiratory symptoms and atopy in Aberdeen schoolchildren: evidence from two surveys 25 years apart. BMJ. 1992;304(6831):873–5.

    Article  PubMed  CAS  Google Scholar 

  9. Gaig P, Olona M, Lejarazu MD, Caballero MT, Dominguez FJ, Echechipia S. Epidemiology of urticaria in Spain. J Investig Allergol Clin Immunol. 2004;14(3):214–20.

    PubMed  CAS  Google Scholar 

  10. Gell PGH, Coombs RRA. Clinical aspects of immunology. Oxford: Blackwell; 1963.

    Google Scholar 

  11. Averbeck M, Gebhardt C, Emmrich F, Treudler R, Simon JC. Immunologic principles of allergic disease. J Der Deutschen Dermatologischen Gesellschaft = J German Soc Dermatol : JDDG. 2007;5(11):1015–28. doi:10.1111/j.1610-0387.2007.06538.x.

  12. Descotes J, Choquet-Kastylevsky G. Gell and Coombs’s classification: is it still valid? Toxicol. 2001;158(1–2):43–9.

    Article  CAS  Google Scholar 

  13. Rajan TV. The Gell-Coombs classification of hypersensitivity reactions: a re-interpretation. Trends Immunol. 2003;24(7):376–9.

    Article  PubMed  CAS  Google Scholar 

  14. Uzzaman A, Cho SH. Chapter 28: Classification of hypersensitivity reactions. Allergy and asthma proceedings : the official journal of regional and state allergy societies. 2012;33(Suppl 1):96–9. doi:10.2500/aap.2012.33.3561.

    Article  Google Scholar 

  15. Gould HJ, Sutton BJ. IgE in allergy and asthma today. Nat Rev Immunol. 2008;8(3):205–17.

    Article  PubMed  CAS  Google Scholar 

  16. Wu CH, Lee MF. Molecular characteristics of cockroach allergens. Cell Mol Immunol. 2005;2(3):177–80.

    PubMed  CAS  Google Scholar 

  17. Posadas SJ, Pichler WJ. Delayed drug hypersensitivity reactions - new concepts. Clin Exp Allergy. 2007;37(7):989–99. doi:10.1111/j.1365-2222.2007.02742.x.

    Article  PubMed  CAS  Google Scholar 

  18. Pichler WJ. Delayed drug hypersensitivity reactions. Ann Intern Med. 2003;139(8):683–93.

    PubMed  CAS  Google Scholar 

  19. Hari Y, Urwyler A, Hurni M, Yawalkar N, Dahinden C, Wendland T, et al. Distinct serum cytokine levels in drug- and measles-induced exanthema. Int Arch Allergy Immunol. 1999;120(3):225–9.

    Article  PubMed  CAS  Google Scholar 

  20. Nassif A, Bensussan A, Dorothee G, Mami-Chouaib F, Bachot N, Bagot M, et al. Drug specific cytotoxic T-cells in the skin lesions of a patient with toxic epidermal necrolysis. J Invest Dermatol. 2002;118(4):728–33. doi:10.1046/j.1523-1747.2002.01622.x.

    Article  PubMed  CAS  Google Scholar 

  21. Bateman ED, Hurd SS, Barnes PJ, Bousquet J, Drazen JM, FitzGerald M, et al. Global strategy for asthma management and prevention: GINA executive summary. The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology. 2008;31(1):143–78. doi:10.1183/09031936.00138707.

    Article  CAS  Google Scholar 

  22. Roy SR, McGinty EE, Hayes SC, Zhang L. Regional and racial disparities in asthma hospitalizations in Mississippi. J Allergy Clin Immunol. 2010;125(3):636–42. doi:10.1016/j.jaci.2009.11.046.

    Article  PubMed  Google Scholar 

  23. Kiley J, Smith R, Noel P. Asthma phenotypes. Curr Opin Pulm Med. 2007;13(1):19–23. doi:10.1097/MCP.0b013e328011b84b.

    PubMed  CAS  Google Scholar 

  24. Spergel JM. From atopic dermatitis to asthma: the atopic March. Annals of allergy, asthma and immunology : official publication of the American College of Allergy, Asthma and Immunology. 2010;105(2):99–106; quiz 7–9, 17. doi:10.1016/j.anai.2009.10.002.

  25. Spergel JM. Epidemiology of atopic dermatitis and atopic March in children. Immunol Allergy Clin North Am. 2010;30(3):269–80. doi:10.1016/j.iac.2010.06.003.

    Article  PubMed  Google Scholar 

  26. Spergel JM, Paller AS. Atopic dermatitis and the atopic March. J Allergy Clin Immunol. 2003;112(6 Suppl):S118–27. doi:10.1016/j.jaci.2003.09.033.

    Article  PubMed  Google Scholar 

  27. Rhodes HL, Thomas P, Sporik R, Holgate ST, Cogswell JJ. A birth cohort study of subjects at risk of atopy: twenty-two-year follow-up of wheeze and atopic status. Am J Respir Crit Care Med. 2002;165(2):176–80.

    PubMed  Google Scholar 

  28. Gustafsson D, Sjoberg O, Foucard T. Development of allergies and asthma in infants and young children with atopic dermatitis–a prospective follow-up to 7 years of age. Allergy. 2000;55(3):240–5.

    Article  PubMed  CAS  Google Scholar 

  29. Kulig M, Bergmann R, Klettke U, Wahn V, Tacke U, Wahn U. Natural course of sensitization to food and inhalant allergens during the first 6 years of life. J Allergy Clin Immunol. 1999;103(6):1173–9.

    Article  PubMed  CAS  Google Scholar 

  30. Kim HY, DeKruyff RH, Umetsu DT. The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat Immunol. 2010;11(7):577–84. doi:10.1038/ni.1892.

    Article  PubMed  CAS  Google Scholar 

  31. van den Berge M, Heijink HI, van Oosterhout AJ, Postma DS. The role of female sex hormones in the development and severity of allergic and non-allergic asthma. Clin Exp Allergy. 2009;39(10):1477–81. doi:10.1111/j.1365-2222.2009.03354.x.

    Article  PubMed  Google Scholar 

  32. Steinman RM. Decisions about dendritic cells: past, present, and future. Annu Rev Immunol. 2012;30:1–22. doi:10.1146/annurev-immunol-100311-102839.

    Article  PubMed  CAS  Google Scholar 

  33. Caminschi I, Shortman K. Boosting antibody responses by targeting antigens to dendritic cells. Trends Immunol. 2012;33(2):71–7. doi:10.1016/j.it.2011.10.007.

    Article  PubMed  CAS  Google Scholar 

  34. Lim RH, Kobzik L. Maternal transmission of asthma risk. Am J Reprod Immunol. 2009;61(1):1–10. doi:10.1111/j.1600-0897.2008.00671.x.

    Article  PubMed  Google Scholar 

  35. Fedulov AV, Kobzik L. Allergy risk is mediated by dendritic cells with congenital epigenetic changes. Am J Respir Cell Mol Biol. 2011;44(3):285–92. doi:10.1165/rcmb.2009-0400OC.

    Article  PubMed  CAS  Google Scholar 

  36. North ML, Ellis AK. The role of epigenetics in the developmental origins of allergic disease. Annals of allergy, asthma and immunology : official publication of the American College of Allergy, Asthma, and Immunology. 2011;106(5):355–61; quiz 62. doi:10.1016/j.anai.2011.02.008.

  37. Gould HJ, Sutton BJ, Beavil AJ, Beavil RL, McCloskey N, Coker HA, et al. The biology of IGE and the basis of allergic disease. Annu Rev Immunol. 2003;21:579–628.

    Article  PubMed  CAS  Google Scholar 

  38. Barnes PJ. Pathophysiology of allergic inflammation. Immunol Rev. 2011;242(1):31–50. doi:10.1111/j.1600-065X.2011.01020.x.

    Article  PubMed  CAS  Google Scholar 

  39. Shamri R, Xenakis JJ, Spencer LA. Eosinophils in innate immunity: an evolving story. Cell Tissue Res. 2011;343(1):57–83. doi:10.1007/s00441-010-1049-6.

    Article  PubMed  Google Scholar 

  40. van Beek AA, Knol EF, de Vos P, Smelt MJ, Savelkoul HF, van Neerven RJ. Recent Developments in Basophil Research: Do Basophils Initiate and Perpetuate Type 2 T-Helper Cell Responses? Int Arch Allergy Immunol. 2012;160(1):7–17. doi:10.1159/000341633.

    Article  PubMed  Google Scholar 

  41. Chirumbolo S. State-of-the-art review about basophil research in immunology and allergy: is the time right to treat these cells with the respect they deserve? Blood transfusion = Trasfusione del sangue. 2012;10(2):148–164. doi:10.2450/2011.0020-11.

  42. Alcorn JF, Crowe CR, Kolls JK. TH17 cells in asthma and COPD. Annu Rev Physiol. 2010;72:495–516. doi:10.1146/annurev-physiol-021909-135926.

    Article  PubMed  CAS  Google Scholar 

  43. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. 2006;203(10):2271–9. doi:10.1084/jem.20061308.

    Article  PubMed  CAS  Google Scholar 

  44. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986;136(7):2348–57.

    PubMed  CAS  Google Scholar 

  45. Kay AB. Allergy and allergic diseases. First of two parts. N Engl J Med. 2001;344(1):30–7. doi:10.1056/NEJM200101043440106.

    Article  PubMed  CAS  Google Scholar 

  46. Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol. 2003;3(3):253–7. doi:10.1038/nri1032.

    Article  PubMed  CAS  Google Scholar 

  47. Sakaguchi S, Wing K, Miyara M. Regulatory T cells - a brief history and perspective. Eur J Immunol. 2007;37(Suppl 1):S116–23. doi:10.1002/eji.200737593.

    Article  PubMed  CAS  Google Scholar 

  48. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4(4):330–6. doi:10.1038/ni904.

    Article  PubMed  CAS  Google Scholar 

  49. Wan YY, Flavell RA. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature. 2007;445(7129):766–70. doi:10.1038/nature05479.

    Article  PubMed  CAS  Google Scholar 

  50. Ling EM, Smith T, Nguyen XD, Pridgeon C, Dallman M, Arbery J, et al. Relation of CD4+CD25+ regulatory T-cell suppression of allergen-driven T-cell activation to atopic status and expression of allergic disease. Lancet. 2004;363(9409):608–15. doi:10.1016/S0140-6736(04)15592-X.

    Article  PubMed  CAS  Google Scholar 

  51. Maizels N. Immunoglobulin gene diversification. Annu Rev Genet. 2005;39:23–46.

    Article  PubMed  CAS  Google Scholar 

  52. Shen CH, Stavnezer J. Activation of the mouse Ig germline epsilon promoter by IL-4 is dependent on AP-1 transcription factors. J Immunol. 2001;166(1):411–23.

    PubMed  CAS  Google Scholar 

  53. KleinJan A, Vinke JG, Severijnen LW, Fokkens WJ. Local production and detection of (specific) IgE in nasal B-cells and plasma cells of allergic rhinitis patients. The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology. 2000;15(3):491–7.

    Article  CAS  Google Scholar 

  54. Dullaers M, De Bruyne R, Ramadani F, Gould HJ, Gevaert P, Lambrecht BN. The who, where, and when of IgE in allergic airway disease. J Allergy Clin Immunol. 2012;129(3):635–45. doi:10.1016/j.jaci.2011.10.029.

    Article  PubMed  CAS  Google Scholar 

  55. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102:553–63.

    Article  PubMed  CAS  Google Scholar 

  56. Muramatsu M, Sankaranand VS, Anant S, Sugai M, Kinoshita K, Davidson NO, et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem. 1999;274(26):18470–6.

    Article  PubMed  CAS  Google Scholar 

  57. Di Noia JM, Neuberger MS. Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem. 2007;76:1–22.

    Article  PubMed  Google Scholar 

  58. Teng G, Papavasiliou FN. Immunoglobulin somatic hypermutation. Annu Rev Genet. 2007;41:107–20.

    Article  PubMed  CAS  Google Scholar 

  59. Wang Y, Carter RH. CD19 regulates B cell maturation, proliferation, and positive selection in the FDC zone of murine splenic germinal centers. Immunology. 2005;22(6):749–61.

    CAS  Google Scholar 

  60. Longerich S, Basu U, Alt F, Storb U. AID in somatic hypermutation and class switch recombination. Curr Opin Immunol. 2006;18(2):164–74.

    Article  PubMed  CAS  Google Scholar 

  61. Casali P, Pal Z, Xu Z, Zan H. DNA repair in antibody somatic hypermutation. Trends Immunol. 2006;27(7):313–21.

    Article  PubMed  CAS  Google Scholar 

  62. Peled JU, Kuang FL, Iglesias-Ussel MD, Roa S, Kalis SL, Goodman MF, et al. The biochemistry of somatic hypermutation. Annu Rev Immunol. 2008;26:481–511.

    Article  PubMed  CAS  Google Scholar 

  63. Longo NS, Lipsky PE. Why do B cells mutate their immunoglobulin receptors? Trends Immunol. 2006;27(8):374–80.

    Article  PubMed  CAS  Google Scholar 

  64. Stavnezer J, Guikema JE, Schrader CE. Mechanism and regulation of class switch recombination. Annu Rev Immunol. 2008;26:261–92.

    Article  PubMed  CAS  Google Scholar 

  65. Snow RE, Djukanovic R, Stevenson FK. Analysis of immunoglobulin E VH transcripts in a bronchial biopsy of an asthmatic patient confirms bias towards VH5, and indicates local clonal expansion, somatic mutation and isotype switch events. Immunology. 1999;98(4):646–51.

    Article  PubMed  CAS  Google Scholar 

  66. Coker HA, Durham SR, Gould HJ. Local somatic hypermutation and class switch recombination in the nasal mucosa of allergic rhinitis patients. J Immunol. 2003;171(10):5602–10.

    PubMed  CAS  Google Scholar 

  67. Gould HJ, Takhar P, Harries HE, Durham SR, Corrigan CJ. Germinal-centre reactions in allergic inflammation. Trends Immunol. 2006;27(10):446–52.

    Article  PubMed  CAS  Google Scholar 

  68. Takhar P, Corrigan CJ, Smurthwaite L, O’Connor BJ, Durham SR, Lee TH, et al. Class switch recombination to IgE in the bronchial mucosa of atopic and nonatopic patients with asthma. J Allergy Clin Immunol. 2007;119(1):213–8.

    Article  PubMed  CAS  Google Scholar 

  69. Kraft S, Kinet JP. New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol. 2007;7(5):365–78.

    Article  PubMed  CAS  Google Scholar 

  70. Liu M, Duke JL, Richter DJ, Vinuesa CG, Goodnow CC, Kleinstein SH, et al. Two levels of protection for the B cell genome during somatic hypermutation. Nature. 2008;451(7180):841–5.

    Article  PubMed  CAS  Google Scholar 

  71. Yang SY, Schatz DG. Targeting of AID-mediated sequence diversification by cis-acting determinants. Adv Immunol. 2007;94:109–25.

    Article  PubMed  CAS  Google Scholar 

  72. Basu U, Chaudhuri J, Alpert C, Dutt S, Ranganath S, Li G et al. The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature. 2005;438(7067):508–11. doi:nature04255 [pii].

    Google Scholar 

  73. Nambu Y, Sugai M, Gonda H, Lee CG, Katakai T, Agata Y et al. Transcription-coupled events associating with immunoglobulin switch region chromatin. Science NY. 2003;302(5653):2137–2140.

    Google Scholar 

  74. Chaudhuri J, Tian M, Khuong C, Chua K, Pinaud E, Alt FW. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature. 2003;422(6933):726–30.

    Article  PubMed  CAS  Google Scholar 

  75. MacDuff DA, Neuberger MS, Harris RS. MDM2 can interact with the C-terminus of AID but it is inessential for antibody diversification in DT40 B cells. Mol Immunol. 2006;43(8):1099–108.

    Article  PubMed  CAS  Google Scholar 

  76. Wu X, Geraldes P, Platt JL, Cascalho M. The double-edged sword of activation-induced cytidine deaminase. J Immunol. 2005;174(2):934–41.

    PubMed  CAS  Google Scholar 

  77. Conticello SG, Ganesh K, Xue K, Lu M, Rada C, Neuberger MS. Interaction between antibody-diversification enzyme AID and spliceosome-associated factor CTNNBL1. Mol Cell. 2008;31(4):474–84.

    Article  PubMed  CAS  Google Scholar 

  78. Stanlie A, Begum NA, Akiyama H, Honjo T. The DSIF subunits Spt4 and Spt5 have distinct roles at various phases of immunoglobulin class switch recombination. PLoS Genet. 2012;8(4):e1002675. doi:10.1371/journal.pgen.1002675.

    Article  PubMed  CAS  Google Scholar 

  79. Pavri R, Gazumyan A, Jankovic M, Di Virgilio M, Klein I, Ansarah-Sobrinho C et al. Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell. 2010;143(1):122–33. doi:S0092-8674(10)01065-2 [pii].

    Google Scholar 

  80. Vuong BQ, Chaudhuri J. Combinatorial mechanisms regulating AID-dependent DNA deamination: Interacting proteins and post-translational modifications. Semin Immunol. 2012;. doi:10.1016/j.smim.2012.05.006.

    PubMed  Google Scholar 

  81. Nowak U, Matthews AJ, Zheng S, Chaudhuri J. The splicing regulator PTBP2 interacts with the cytidine deaminase AID and promotes binding of AID to switch-region DNA. Nat Immunol. 2011;12(2):160–6. doi:10.1038/ni.1977.

    Article  PubMed  CAS  Google Scholar 

  82. Basu U, Meng FL, Keim C, Grinstein V, Pefanis E, Eccleston J, et al. The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell. 2011;144(3):353–63. doi:10.1016/j.cell.2011.01.001.

    Article  PubMed  CAS  Google Scholar 

  83. Fenghao X, Saxon A, Nguyen A, Ke Z, Diaz-Sanchez D, Nel A. Interleukin 4 activates a signal transducer and activator of transcription (Stat) protein which interacts with an interferon-gamma activation site-like sequence upstream of the I epsilon exon in a human B cell line. Evidence for the involvement of Janus kinase 3 and interleukin-4 Stat. J Clin Invest. 1995;96(2):907–14.

    Article  PubMed  CAS  Google Scholar 

  84. Hou J, Schindler U, Henzel WJ, Ho TC, Brasseur M, McKnight SL. An interleukin-4-induced transcription factor: IL-4 Stat. Science NY. 1994;265(5179):1701–7016.

    Google Scholar 

  85. Stutz AM, Woisetschlager M. Functional synergism of STAT6 with either NF-kappa B or PU.1 to mediate IL-4-induced activation of IgE germline gene transcription. J Immunol. 1999;163(8):4383–91.

    PubMed  CAS  Google Scholar 

  86. Delphin S, Stavnezer J. Characterization of an interleukin 4 (IL-4) responsive region in the immunoglobulin heavy chain germline epsilon promoter: regulation by NF-IL-4, a C/EBP family member and NF-kappa B/p50. J Exp Med. 1995;181(1):181–92.

    Article  PubMed  CAS  Google Scholar 

  87. Messner B, Stutz AM, Albrecht B, Peiritsch S, Woisetschlager M. Cooperation of binding sites for STAT6 and NF kappa B/rel in the IL-4-induced up-regulation of the human IgE germline promoter. J Immunol. 1997;159(7):3330–7.

    PubMed  CAS  Google Scholar 

  88. Erazo A, Kutchukhidze N, Leung M, Christ AP, Urban JF Jr, Curotto de Lafaille MA. Unique maturation program of the IgE response in vivo. Immunity. 2007;26(2):191–203.

    Article  PubMed  CAS  Google Scholar 

  89. Xiong H, Dolpady J, Wabl M, Curotto de Lafaille MA, Lafaille JJ. Sequential class switching is required for the generation of high affinity IgE antibodies. J Exp Med. 2012;. doi:10.1084/jem.20111941.

    Google Scholar 

  90. Carter RH, Wang Y, Brooks S. Role of CD19 signal transduction in B cell biology. Immunol Res. 2002;26(1–3):45–54. doi:10.1385/IR:26:1-3:045.

    Article  PubMed  CAS  Google Scholar 

  91. Pate MB, Smith JK, Chi DS, Krishnaswamy G. Regulation and dysregulation of immunoglobulin E: a molecular and clinical perspective. Clin Mol Allergy. 2010;8:3. doi:10.1186/1476-7961-8-3.

    Article  PubMed  Google Scholar 

  92. Dedeoglu F, Horwitz B, Chaudhuri J, Alt FW, Geha RS. Induction of activation-induced cytidine deaminase gene expression by IL-4 and CD40 ligation is dependent on STAT6 and NFkappaB. Int Immunol. 2004;16(3):395–404.

    Article  PubMed  CAS  Google Scholar 

  93. Holgate ST, Polosa R. Treatment strategies for allergy and asthma. Nat Rev Immunol. 2008;8(3):218–30. doi:10.1038/nri2262.

    Article  PubMed  CAS  Google Scholar 

  94. Boyce JA. Mast cells and eicosanoid mediators: a system of reciprocal paracrine and autocrine regulation. Immunol Rev. 2007;217:168–85. doi:10.1111/j.1600-065X.2007.00512.x.

    Article  PubMed  CAS  Google Scholar 

  95. Boyce JA. Eicosanoid mediators of mast cells: receptors, regulation of synthesis, and pathobiologic implications. Chem Immunol Allergy. 2005;87:59–79. doi:10.1159/000087571.

    Article  PubMed  CAS  Google Scholar 

  96. Galli SJ, Kalesnikoff J, Grimbaldeston MA, Piliponsky AM, Williams CM, Tsai M. Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol. 2005;23:749–86. doi:10.1146/annurev.immunol.21.120601.141025.

    Article  PubMed  CAS  Google Scholar 

  97. Gilfillan AM, Tkaczyk C. Integrated signalling pathways for mast-cell activation. Nat Rev Immunol. 2006;6(3):218–30. doi:10.1038/nri1782.

    Article  PubMed  CAS  Google Scholar 

  98. Sarin S, Undem B, Sanico A, Togias A. The role of the nervous system in rhinitis. J Allergy Clin Immunol. 2006;118(5):999–1016. doi:10.1016/j.jaci.2006.09.013.

    Article  PubMed  Google Scholar 

  99. Cevikbas F, Steinhoff A, Homey B, Steinhoff M. Neuroimmune interactions in allergic skin diseases. Curr Opin Allergy Clin Immunol. 2007;7(5):365–73. doi:10.1097/ACI.0b013e3282a644d2.

    Article  PubMed  CAS  Google Scholar 

  100. Lalloo UG, Barnes PJ, Chung KF. Pathophysiology and clinical presentations of cough. J Allergy Clin Immunol. 1996;98(5 Pt 2):S91-6; discussion S6-7.

    Google Scholar 

  101. Rivera J, Gilfillan AM. Molecular regulation of mast cell activation. J allergy and Clin Immunol. 2006;117(6):1214–1225; quiz 26. doi:10.1016/j.jaci.2006.04.015.

    Google Scholar 

  102. Galli SJ, Tsai M, Piliponsky AM. The development of allergic inflammation. Nature. 2008;454(7203):445–54. doi:10.1038/nature07204.

    Article  PubMed  CAS  Google Scholar 

  103. Kay AB, Ali FR, Heaney LG, Benyahia F, Soh CP, Renz H, et al. Airway expression of calcitonin gene-related peptide in T-cell peptide-induced late asthmatic reactions in atopics. Allergy. 2007;62(5):495–503. doi:10.1111/j.1398-9995.2007.01342.x.

    Article  PubMed  CAS  Google Scholar 

  104. Murdoch JR, Lloyd CM. Chronic inflammation and asthma. Mutat Res. 2010;690(1–2):24–39. doi:10.1016/j.mrfmmm.2009.09.005.

    PubMed  CAS  Google Scholar 

  105. Holgate ST. Epithelium dysfunction in asthma. J Allergy Clin Immunol. 2007;120(6):1233–1244; quiz 45-6. doi:10.1016/j.jaci.2007.10.025.

    Google Scholar 

  106. Gern JE, Busse WW. Relationship of viral infections to wheezing illnesses and asthma. Nat Rev Immunol. 2002;2(2):132–8. doi:10.1038/nri725.

    Article  PubMed  CAS  Google Scholar 

  107. Guilbert TW, Singh AM, Danov Z, Evans MD, Jackson DJ, Burton R et al. Decreased lung function after preschool wheezing rhinovirus illnesses in children at risk to develop asthma. J Allergy Clin Immunol. 2011;128(3):532–538 e1-10. doi:10.1016/j.jaci.2011.06.037.

    Google Scholar 

  108. Jackson DJ, Gangnon RE, Evans MD, Roberg KA, Anderson EL, Pappas TE, et al. Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children. Am J Respir Crit Care Med. 2008;178(7):667–72. doi:10.1164/rccm.200802-309OC.

    Article  PubMed  Google Scholar 

  109. Lemanske RF Jr, Jackson DJ, Gangnon RE, Evans MD, Li Z, Shult PA, et al. Rhinovirus illnesses during infancy predict subsequent childhood wheezing. J Allergy Clin Immunol. 2005;116(3):571–7. doi:10.1016/j.jaci.2005.06.024.

    Article  PubMed  Google Scholar 

  110. Leung DY, Boguniewicz M, Howell MD, Nomura I, Hamid QA. New insights into atopic dermatitis. J Clin Invest. 2004;113(5):651–7. doi:10.1172/JCI21060.

    PubMed  CAS  Google Scholar 

  111. Pawankar R, Nonaka M, Yamagishi S, Yagi T. Pathophysiologic mechanisms of chronic rhinosinusitis. Immunol Allergy Clin North Am. 2004;24(1):75–85. doi:10.1016/S0889-8561(03)00109-7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marién Pascual .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Pascual, M., Roa, S. (2013). Immune System and Atopic Disorders. In: Epigenetic Approaches to Allergy Research. SpringerBriefs in Genetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6366-5_2

Download citation

Publish with us

Policies and ethics