Nonlocal Optimum Design

  • Luc Pronzato
  • Andrej Pázman
Chapter
Part of the Lecture Notes in Statistics book series (LNS, volume 212)

Abstract

The design criteria considered in Chap. 5 for nonlinear models are local, in the sense that they depend on the choice of a prior nominal value θ 0 for the model parameters θ.

Keywords

Entropy Covariance 

References

  1. Bornkamp, B. (2011). Functional uniform priors for nonlinear modelling. Technical Report arXiv:1110.4400v1.Google Scholar
  2. Braess, D. and H. Dette (2007). On the number of support points of maximin and Bayesian optimal designs. Ann. Statist. 35(2), 772–792.MathSciNetMATHCrossRefGoogle Scholar
  3. Chaloner, K. and K. Larntz (1989). Optimal Bayesian design applied to logistic regression experiments. J. Stat. Plann. Inference 21, 191–208.MathSciNetMATHCrossRefGoogle Scholar
  4. Chaloner, K. and I. Verdinelli (1995). Bayesian experimental design: a review. Statist. Sci. 10(3), 273–304.MathSciNetMATHCrossRefGoogle Scholar
  5. Chaudhuri, P. and P. Mykland (1993). Nonlinear experiments: optimal design and inference based likelihood. J. Amer. Statist. Assoc. 88(422), 538–546.MathSciNetMATHCrossRefGoogle Scholar
  6. Chaudhuri, P. and P. Mykland (1995). On efficiently designing of nonlinear experiments. Statistica Sinica 5, 421–440.MathSciNetMATHGoogle Scholar
  7. Clarke, B. and A. Barron (1994). Jeffrey’s prior is asymptotically less favorable under entropy risk. J. Stat. Plann. Inference 41, 37–60.MathSciNetMATHCrossRefGoogle Scholar
  8. Cox, D. and D. Hinkley (1974). Theoretical Statistics. London: Chapman & Hall.MATHGoogle Scholar
  9. D’Argenio, D. (1990). Incorporating prior parameter uncertainty in the design of sampling schedules for pharmacokinetic parameter estimation experiments. Math. Biosci. 99, 105–118.MathSciNetMATHCrossRefGoogle Scholar
  10. Dembski, W. (1990). Uniform probability. J. Theoret. Probab. 3(4), 611–626.MathSciNetMATHCrossRefGoogle Scholar
  11. Eaton, M., A. Giovagnoli, and P. Sebastiani (1996). A predictive approach to the Bayesian design problem with application to normal regression models. Biometrika 83(1), 111–125.MathSciNetMATHCrossRefGoogle Scholar
  12. Fedorov, V. (1980). Convex design theory. Math. Operationsforsch. Statist. Ser. Statist. 11(3), 403–413.MathSciNetMATHGoogle Scholar
  13. Ford, I. and S. Silvey (1980). A sequentially constructed design for estimating a nonlinear parametric function. Biometrika 67(2), 381–388.MathSciNetMATHCrossRefGoogle Scholar
  14. Ford, I., D. Titterington, and C. Wu (1985). Inference and sequential design. Biometrika 72(3), 545–551.MathSciNetCrossRefGoogle Scholar
  15. Gautier, R. and L. Pronzato (1998). Sequential design and active control. In N. Flournoy, W. Rosenberger, and W. Wong (Eds.), New Developments and Applications in Experimental Design, Lecture Notes — Monograph Series, vol. 34, pp. 138–151. Hayward: IMS.Google Scholar
  16. Gautier, R. and L. Pronzato (1999). Some results on optimal allocation in two–step sequential design. Biometrical Lett. 36(1), 15–30.MATHGoogle Scholar
  17. Gautier, R. and L. Pronzato (2000). Adaptive control for sequential design. Discuss. Math. Probab. Stat. 20(1), 97–114.MathSciNetMATHCrossRefGoogle Scholar
  18. Hu, I. (1998). On sequential designs in nonlinear problems. Biometrika 85(2), 496–503.MathSciNetMATHCrossRefGoogle Scholar
  19. Lai, T. (1994). Asymptotic properties of nonlinear least squares estimates in stochastic regression models. Ann. Statist. 22(4), 1917–1930.MathSciNetMATHCrossRefGoogle Scholar
  20. Lai, T. and C. Wei (1982). Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems. Ann. Statist. 10(1), 154–166.MathSciNetCrossRefGoogle Scholar
  21. Li, X.-S. and S.-C. Fang (1997). On the entropic regularization method for solving min-max problems with applications. Math. Methods Oper. Res. 46, 119–130.MathSciNetMATHCrossRefGoogle Scholar
  22. Lindley, D. (1956). On a measure of information provided by an experiment. Ann. Math. Statist. 27, 986–1005.MathSciNetMATHCrossRefGoogle Scholar
  23. Müller, W. and B. Pötscher (1992). Batch sequential design for a nonlinear estimation problem. In V. Fedorov, W. Müller, and I. Vuchkov (Eds.), Model-Oriented Data Analysis II, Proc. 2nd IIASA Workshop, St Kyrik (Bulgaria), May 1990, pp. 77–87. Heidelberg: Physica Verlag.Google Scholar
  24. Pan, S., S. He, and X. Li (2007). Smoothing method for minimizing the sum of the r largest functions. Optim. Methods Softw. 22, 267–277.MathSciNetMATHCrossRefGoogle Scholar
  25. Parzen, E. (1979). Nonparametric statistical data modeling. J. Amer. Statist. Assoc. 74(365), 105–121.MathSciNetMATHCrossRefGoogle Scholar
  26. Pilz, J. (1983). Bayesian Estimation and Experimental Design in Linear Regression Models, Volume 55. Leipzig: Teubner-Texte zur Mathematik. [Also published by Wiley, New York, 1991].Google Scholar
  27. Pronzato, L. (2008). Optimal experimental design and some related control problems. Automatica 44, 303–325.MathSciNetCrossRefGoogle Scholar
  28. Pronzato, L. (2009a). Asymptotic properties of nonlinear estimates in stochastic models with finite design space. Statist. Probab. Lett. 79, 2307–2313.MathSciNetMATHCrossRefGoogle Scholar
  29. Pronzato, L. (2010a). One-step ahead adaptive D-optimal design on a finite design space is asymptotically optimal. Metrika 71(2), 219–238.MathSciNetMATHCrossRefGoogle Scholar
  30. Rojas, C., J. Welsh, G. Goodwin, and A. Feuer (2007). Robust optimal experiment design for system identification. Automatica 43, 993–1008.MathSciNetMATHCrossRefGoogle Scholar
  31. Rudin, W. (1987). Real and Complex Analysis. New York: McGraw-Hill. [3rd ed.].Google Scholar
  32. Scott, D. (1992). Multivariate Density Estimation. New York: Wiley.MATHCrossRefGoogle Scholar
  33. Spokoinyi, V. (1992). On asymptotically optimal sequential experimental design. Advances in Soviet Math. 12, 135–150.MathSciNetGoogle Scholar
  34. Wu, C. (1985). Asymptotic inference from sequential design in a nonlinear situation. Biometrika 72(3), 553–558.MathSciNetMATHCrossRefGoogle Scholar
  35. Wynn, H. (2004). Maximum entropy sampling and general equivalence theory. In A. Di Bucchianico, H. Läuter, and H. Wynn (Eds.), mODa’7 – Advances in Model–Oriented Design and Analysis, Proc. 7th Int. Workshop, Heeze (Netherlands), pp. 211–218. Heidelberg: Physica Verlag.Google Scholar
  36. Wynn, H. (2007). Bayesian information-based learning and majorization. Technical report, http://mucm.group.shef.ac.uk/index.html.
  37. Yang, S.-S. (1985). A smooth nonparametric estimator of a quantile function. J. Amer. Statist. Assoc. 80(392), 1004–1011.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Luc Pronzato
    • 1
  • Andrej Pázman
    • 2
  1. 1.French National Center for Scientific Research (CNRS)University of NiceSophia AntipolisFrance
  2. 2.Department of Applied Mathematics and StatisticsComenius UniversityBratislavaSlovakia

Personalised recommendations