Skip to main content

Introduction

  • Chapter
  • First Online:
Design of Experiments in Nonlinear Models

Part of the book series: Lecture Notes in Statistics ((LNS,volume 212))

Abstract

This book is about experiments; it concerns situations where we have to organize an experiment in order to gain some information about an object of interest. Fragments of this information can be obtained by making observations within some elementary experiments called trials. We shall confound the action of making an experiment with the variables that characterize this action and use the term experimental design for both.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Situations where the assumption of independence for different trials does not hold require a special treatment, and the methods to be used differ very much according to the type of prior knowledge about the dependence structure of the observations; see, e.g., Fedorov and Hackl [1997, Sect. 5.3], Pázman and Müller (2001, 2010), Müller and Pázman [2003], and Zhu and Zhang [2006]. However, replacing the assumption of independent errors by that of errors forming a martingale difference sequence does not modify the situation very much for regression models, in particular in the context of sequential design; see, e.g., Lai and Wei [1982] and Pronzato [2009a].

  2. 2.

    There exist situations, however, where a continuous design can be implemented without any approximation; this is the case, for example, when designing the experiment corresponds to choosing the power spectral density of the input signal for a dynamical system; see Goodwin and Payne [1977, Chap. 6], Zarrop [1979], Ljung [1987, Chap. 14], and Walter and Pronzato [1997, Chap. 6].

References

  • Atkinson, A. and A. Donev (1992). Optimum Experimental Design. Oxford Univ. Press.

    Google Scholar 

  • Bartlett, P. (2003). Prediction algorithms: complexity, concentration and convexity. In Prep. 13th IFAC Symp. on System Identification, Rotterdam, pp. 1507–1517.

    Google Scholar 

  • Berlinet, A. and C. Thomas-Agnan (2004). Reproducing Kernel Hilbert Spaces in Probability and Statistics. Boston: Kluwer.

    Book  MATH  Google Scholar 

  • Casella, G. (2008). Statistical Design. New York: Springer.

    Book  MATH  Google Scholar 

  • Cheng, M.-Y., P. Hall, and D. Titterington (1998). Optimal design for curve estimation by local linear smoothing. Bernoulli 4(1), 3–14.

    Article  MathSciNet  MATH  Google Scholar 

  • Cucker, F. and S. Smale (2001). On the mathematical foundations of learning. Bull. AMS 39(1), 1–49.

    Article  MathSciNet  Google Scholar 

  • Fedorov, V. (1972). Theory of Optimal Experiments. New York: Academic Press.

    Google Scholar 

  • Fedorov, V. and P. Hackl (1997). Model-Oriented Design of Experiments. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Gallant, A. (1987). Nonlinear Statistical Models. New York: Wiley.

    Book  MATH  Google Scholar 

  • Goodwin, G. and R. Payne (1977). Dynamic System Identification: Experiment Design and Data Analysis. New York: Academic Press.

    MATH  Google Scholar 

  • Hamilton, D. and D. Watts (1985). A quadratic design criterion for precise estimation in nonlinear regression models. Technometrics 27, 241–250.

    Article  MathSciNet  MATH  Google Scholar 

  • Hastie, T., R. Tibshirani, and J. Friedman (2001). The Elements of Statistical Learning. Data Mining, Inference and Prediction. Heidelberg: Springer.

    MATH  Google Scholar 

  • Ivanov, A. (1997). Asymptotic Theory of Nonlinear Regression. Dordrecht: Kluwer.

    Book  MATH  Google Scholar 

  • Jennrich, R. (1969). Asymptotic properties of nonlinear least squares estimation. Ann. Math. Statist. 40, 633–643.

    Article  MathSciNet  MATH  Google Scholar 

  • Lai, T. and C. Wei (1982). Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems. Ann. Statist. 10(1), 154–166.

    Article  MathSciNet  Google Scholar 

  • Ljung, L. (1987). System Identification, Theory for the User. Englewood Cliffs: Prentice Hall.

    MATH  Google Scholar 

  • Montgomery, D. (1976). Design and Analysis of Experiments. New York: Wiley. [6th ed., 2005].

    Google Scholar 

  • Morris, M. and T. Mitchell (1995). Exploratory designs for computational experiments. J. Stat. Plann. Inference 43, 381–402.

    Article  MATH  Google Scholar 

  • Pukelsheim, F. (1993). Optimal Experimental Design. New York: Wiley.

    Google Scholar 

  • Schaback, R. (2003). Mathematical results concerning kernel techniques. In Prep. 13th IFAC Symp. on System Identification, Rotterdam, pp. 1814–1819.

    Google Scholar 

  • Silvey, S. (1980). Optimal Design. London: Chapman & Hall.

    Book  MATH  Google Scholar 

  • Tsybakov, A. (2004). Introduction à l’estimation non-paramétrique. Heidelberg: Springer.

    MATH  Google Scholar 

  • Vapnik, V. (1998). Statistical Learning Theory. New York: Wiley.

    MATH  Google Scholar 

  • Vazquez, E. (2005). Modélisation comportementale de systèmes nonlinéaires multivariables par méthodes à noyaux et applications. Ph.D. Thesis, Université Paris XI, Orsay, France.

    Google Scholar 

  • Walter, E. (1982). Identifiability of State-Space Models. Berlin: Springer Verlag.

    Book  MATH  Google Scholar 

  • Walter, E. and L. Pronzato (1997). Identification of Parametric Models from Experimental Data. Heidelberg: Springer.

    MATH  Google Scholar 

  • Wu, C. (1981). Asymptotic theory of nonlinear least squares estimation. Ann. Statist. 9(3), 501–513.

    Article  MathSciNet  MATH  Google Scholar 

  • Zarrop, M. (1979). Optimal Experiment Design for Dynamic System Identification. Heidelberg: Springer.

    Book  MATH  Google Scholar 

  • Zhu, Z. and H. Zhang (2006). Spatial sampling design under the infill asymptotic framework. Environmetrics 17(4), 323–337.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pronzato, L., Pázman, A. (2013). Introduction. In: Design of Experiments in Nonlinear Models. Lecture Notes in Statistics, vol 212. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6363-4_1

Download citation

Publish with us

Policies and ethics