Skip to main content

Intra-operative Update of Neuro-images: Comparison of Performance of Image Warping Using Patient-Specific Biomechanical Model and BSpline Image Registration

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine

Abstract

This paper compares the warping of neuro-images using brain deformation predicted by means of patient-specific biomechanical model with the neuro-image registration using BSpline-based free form deformation algorithm. Deformation fields obtained from both algorithms are qualitatively compared and overlaps of edges extracted from the images are examined. Finally, an edge-based Hausdorff distance metric is defined to quantitatively evaluate the accuracy of registration for these two algorithms. From the results it is concluded that the patient-specific biomechanical model ensures higher registration accuracy than the BSpline registration algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warfield, S.K., Haker, S.J., Talos, I.F. et al.: Capturing intraoperative deformations: research experience at Brigham and Women’s hospital. Med. Image Anal. 9, 145–162 (2005)

    Article  Google Scholar 

  2. Wittek, A., Miller, K., Kikinis, R. et al.: Patient specific model of brain deformation: Application to medical image registration. J. Biomech. 40, 919–929 (2007)

    Article  Google Scholar 

  3. Holden, M.: A review of geometric transformations for nonrigid body registration. IEEE Trans. Med. Imag. 27, 111–128 (2008)

    Article  Google Scholar 

  4. Rueckert, D., Sonoda, L.I., Hayes, C. et al.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Trans. Med. Imag. 18, 712–721 (1999)

    Article  Google Scholar 

  5. Schnabel, J.A., Tanner, C., Castellano-Smith, A.D.: Validation of nonrigid image registration using finite-element methods: application to breast MR images. IEEE Trans. Med. Imag. 22, 238–247 (2003)

    Article  Google Scholar 

  6. Wittek, A., Joldes, G., Couton, M. et al.: Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time; Application to non-rigid neuroimage registration. Progr. Biophys. Mol. Biol. 103 292–303 (2010)

    Article  Google Scholar 

  7. Miller, K., Wittek, A., Joldes, G. et al.: Modelling brain deformations for computer-integrated neurosurgery. Int. J. Numer. Meth. Biomed. Eng. 26 117–138 (2010)

    Article  MATH  Google Scholar 

  8. Paulsen, K.D., Miga, M.I., Kennedy, F.E. et al.: A computational model for tracking subsurface tissue deformation during stereotactic neurosurgery. IEEE Trans. Biomed. Eng. 46, 213–225 (1999)

    Article  Google Scholar 

  9. Miga, M.I.: Development and quantification of a 3D brain deformation model for model-updated image-guided stereotactic neurosurgery. PhD. thesis, Dartmouth College, Thayer School of Engineering, Hanover (1998)

    Google Scholar 

  10. Miga, M.I., Paulsen, K.D., Hoopes, P.J. et al.: In vivo modeling of interstitial pressure in the brain under surgical load using finite elements. ASME J. Biomech. 122, 354–363 (2000)

    Article  Google Scholar 

  11. Grosland, N.M., Shivanna, K.H., Magnotta, V.A. et al.: IA-FEMesh: an open-source, interactive, multiblock approach to anatomic finite element model development. Comput. Meth. Programs Biomed. (2009)

    Google Scholar 

  12. Wittek, A., Hawkins, T., Miller, K.: On the unimportance of constitutive models in computing brain deformation for image-guided surgery. Biomech. Model. Mechanobiology 8, 77–84 (2009)

    Article  Google Scholar 

  13. Joldes, G.R., Wittek, A., Miller, K.: Cortical surface motion estimation for brain shift prediction. In: Computational Biomechanics for Medicine IV Workshop (MICCAI 2009). London, UK, p. 50–59 (2009)

    Google Scholar 

  14. Joldes, G., Wittek, A., Miller, K. et al.: Realistic and efficient brain-skull interaction model for brain shift computation. In: Computational Biomechanics for Medicine III (MICCAI 2008 Associated Workshop), p. 95–105 (2008)

    Google Scholar 

  15. Joldes, G., Wittek, A., Couton, M. et al.: Real-time prediction of brain shift using nonlinear finite element algorithms. Medical Image Computing and Computer Assisted Intervention (MICCAI 2009), London, LNCS 5762, p. 300–307 Springer, Berlin (2009)

    Google Scholar 

  16. Miller, K., Chinzei, K.: Mechanical properties of brain tissue in tension. J. Biomech. 35, 483–490 (2002)

    Article  Google Scholar 

  17. Miller, K., Joldes, G.R., Lance, D. et al.: Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Communications. In Numerical Methods in Engineering vol. 23, 121–134 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Joldes, G., Wittek, A., Miller, K.: Computation of intra-operative brain shift using dynamic relaxation. Comput. Meth. Appl. Mech. Eng. 198, 3313–3320 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Joldes, G.R., Wittek, A., Miller, K.: Suite of finite element algorithms for accurate computation of soft tissue deformation for surgical simulation. Med. Image Anal. 13, 912–919 (2009)

    Article  Google Scholar 

  20. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.T.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22, 469–483 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gonzalez, R.C.: Woods RE, Eddins SL Digital Image Processing using Matlab. Gatesmark Publishing (2009)

    Google Scholar 

  22. Schoenberg, I.J.: Contributions to the problem of approximation of equidistant data by analytic functions. Q. Appl. Math. 4, 45–99 (1946)

    MathSciNet  Google Scholar 

  23. Lee, S., Wolberg, G., Shin, S.Y.: Sacttered data interpolation with multilevel B-Splines. IEEE Trans. Visual. Comput. Graph. 3, 228–244 (1997)

    Article  Google Scholar 

  24. Wells, W.M., Viola, P., Kikinis, R.: Multi-modal volume registration by maximization of mutual information. Medical Robotics and Computer Assisted Surgery, p. 55–62 (1995)

    Google Scholar 

  25. Mattes, D., Haynor, D.R., Vesselle, H. et al.: Nonrigid multimodality image registration. In: Proceedings of SPIE 4322, 1609 (2001)

    Article  Google Scholar 

  26. Fedorov, A., Billet, E., Prastawa, M. et al.: Evaluation of Brain MRI alignment with the Robust Hausdorff distance measures. In: The 4th International Symposium on Visual Computing 2008, LNCS, p. 594–603 (2008)

    Google Scholar 

  27. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)

    Article  Google Scholar 

  28. Garlapati, R.R., Joldes, G.R., Wittek, A., et al.: Objective evaluation of accuracy of intra-operative neuroimage registration. In: Computational Biomechanics for Medicine VII (MICCAI Associated Workshop) (accepted) (2012)

    Google Scholar 

  29. Ji, S., Fan, X., Roberts, D.W. et al.: Cortical surface strain estimation using stereovision. In: Medical Image Computing and Computer Assisted Intervention (MICCAI 2011), Toronto. LNCS 6891, p. 412–419 Springer, Berlin (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Mostayed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Mostayed, A. et al. (2013). Intra-operative Update of Neuro-images: Comparison of Performance of Image Warping Using Patient-Specific Biomechanical Model and BSpline Image Registration. In: Wittek, A., Miller, K., Nielsen, P. (eds) Computational Biomechanics for Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6351-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6351-1_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6350-4

  • Online ISBN: 978-1-4614-6351-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics