The Cauchy Problem for the Euler–Poisson System and Derivation of the Zakharov–Kuznetsov Equation

Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 84)


We consider in this paper the rigorous justification of the Zakharov–Kuznetsov equation from the Euler–Poisson system for uniformly magnetized plasmas. We first provide a proof of the local well-posedness of the Cauchy problem for the aforementioned system in dimensions two and three. Then we prove that the long-wave small-amplitude limit is described by the Zakharov–Kuznetsov equation. This is done first in the case of cold plasma; we then show how to extend this result in presence of the isothermal pressure term with uniform estimates when this latter goes to zero.

Key words

Zakharov–Kuznetsov Euler–Poisson 



The three authors acknowledge the support of IMPA, the Brazilian-French program in Mathematics, and the MathAmSud Project “Propagation of Nonlinear Dispersive Equations.” D. L. acknowledges support from the project ANR-08-BLAN-0301-01 and J.-C. S. from the project ANR-07-BLAN-0250 of the Agence Nationale de la Recherche.


  1. 1.
    Alvarez-Samaniego, B., Lannes, D.: Large time existence for 3D water waves and asymptotics. Invent. Math. 171, 485–541 (2008)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    de Bouard, A.: Stability and instability of some nonlinear dispersive solitary waves in higher dimension. Proc. Roy. Soc. Edinburgh Sect. A 126(1), 89–112 (1996)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bustamente, E., Isaza, P., Mejía, J.: On the support of solutions to the Zakharov–Kuznetsov equation. J. Differ. Equat. 251, 2728–2736 (2011)CrossRefGoogle Scholar
  4. 4.
    Chae, D., Tadmor, E.: On the finite time blow-up of the Euler–Poisson equations in \({\mathbb{R}}^{2}\). Comm. Math. Sci. 6(3), 785–789 (2008)MathSciNetMATHGoogle Scholar
  5. 5.
    Cheng, B., Tadmor, E.: A Sharp Local Blow-up Condition for Euler–Poisson Equations with Attractive Forcing. arXiv : 0902.1582v1Google Scholar
  6. 6.
    Colin, T., Ben Youssef, W.: Rigorous derivation of Korteweg-de Vries type systems from a general class of hyperbolic systems. Math. Mod. Num. Anal. (M2AN) 34(4), 873–911 (2000)Google Scholar
  7. 7.
    Davidson, R.C.: Methods in Nonlinear Plasma Physics. Academic, New-York (1972)Google Scholar
  8. 8.
    Faminskii, A.: The Cauchy problem for the Zakharov–Kuznetsov equation. Differ. Equat. 31(6), 1002–1012 (1995)MathSciNetGoogle Scholar
  9. 9.
    Farah, L.G., Linares F., Pastor A.: A note on the 2D generalized Zakharov-Kuznetsov equation: Local, global, and scattering results. J. Differential Equations 253(8), 2558–2571 (2012)Google Scholar
  10. 10.
    Gérard-Varet, D., Han-Kwan, D., Rousset, F.: Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries, Indiana Univ. Math. J., to appear.Google Scholar
  11. 11.
    Grenier, E.: Pseudo-differential energy estimates of singular perturbations. Comm. Pure Appl. Math. 50, 0821–0865 (1997)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Guo, Y., Pausader, B.: Global Smooth Ion Dynamics in the Euler–Poisson System, arXiv:1003.3653.Google Scholar
  13. 13.
    Guo, Y., Pu, X.: KdV Limit of the Euler–Poisson System, arXiv:1202.1830Google Scholar
  14. 14.
    Haragus, M., Nicholls, D.P., Sattinger, D.H.: Solitary wave interactions of the Euler–Poisson equations. J. Math. Fluid Mech. 5, 92–118 (2003)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Haragus, M., Scheel, A.: Linear stability and instability of ion-acoustic plasma solitary waves. Physica D 170, 13–30 (2002)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Himonas, A.A., Misiolek, G., Tiglay, F.: On unique continuation for the modified Euler–Poisson equations. Disc. Cont. Dyn. Syst. 19(3), 515–529 (2007)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Infeld, E., Rowlands, G.: Nonlinear Waves, Solitons and Chaos. Cambridge University Press, Cambridge (1990)MATHGoogle Scholar
  18. 18.
    Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Comm. Pure Appl. Math. 41, 891–917 (1988)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Laedke, E.W., Spatschek, K.H.: Growth rates of bending solitons. J. Plasma Phys. 28(3), 469–484 (1982)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lannes, D.: Sharp estimates for pseudo-differential operators with symbols of limited smoothness and commutators. J. Funct. Anal. 232, 495–539 (2006)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Larkin, N.A., Tronco, E.: Regular solutions of the 2D Zakharov–Kuznetsov equation in a half-space (2012, preprint)Google Scholar
  22. 22.
    Li, Y., Sattinger, D.H.: Solitons collisions in the ion-acoustic plasma equations. J. Math Fluid Mech. 1, 117–130 (1999)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Linares, F., Pastor, A.: Well-posedness for the two-dimensional modified Zakharov–Kuznetsov equation. SIAM J. Math. Anal. 4(4), 1329–1339 (2009)MathSciNetGoogle Scholar
  24. 24.
    Linares, F., Pastor, A.: Local and global well-posedness for the 2D generalized Zakharov–Kuznetsov equation. J. Funct. Anal. 260, 1060–1085 (2011)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Linares, F., Saut, J.-C.: The Cauchy problem for the 3D Zakharov–Kuznetsov equation. Disc. Cont. Dyn. Syst. A 24(2), 547–565 (2009)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Linares, F., Pastor, A., Saut, J.-C.: Well-posedness for the Zakharov–Kuznetsov equation in a cylinder and on the background of a KdV soliton. Comm. Part. Differ. Equat. 35(9), 1674–1689 (2010)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Panthee, M.: A note on the unique continuation property for Zakharov–Kuznetsov equation. Nonlinear Anal. 59, 425–438 (2004)MathSciNetMATHGoogle Scholar
  28. 28.
    Perla-Menzala, G., Rosier, L., Saut, J.-C., Temam, R.: Boundary control of the Zakharov–Kuznetsov equation, submittedGoogle Scholar
  29. 29.
    Pu, X.: Dispersive Limit of the Euler–Poisson System in Higher Dimensions, arXiv:1204.5435v1 [math-ph] 24 April 2012Google Scholar
  30. 30.
    Ribaud, F., Vento, S.: Well-posedness results for the 3D Zakharov–Kuznetsov equation. SIAM J. Math. Anal. 44(4), 2289–2304 (2012)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Ribaud, F., Vento, S.: A note on the Cauchy problem for the 2D generalized Zakharov–Kuznetsov equations. Comptes Rendus Mathématiques 350, 499–503 (2012)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Saut, J.-C., Temam, R.: The initial boundary value problem for the Zakharov–Kuznetsov equation. Adv. Differ. Equat. 15(11–12), 1001–1031 (2010)MathSciNetMATHGoogle Scholar
  33. 33.
    Saut, J.-C., Temam, R., Wang, C.: An initial and boundary-value problem for the Zakharov-Kuznestov equation in a bounded domain. J. Math. Phys. 53, 115612 (2012). Google Scholar
  34. 34.
    Tiǧlay, F.: The Cauchy problem and integrability of a modified Euler–Poisson equation. Trans. A.M.S. 360(4), 1861–1877 (2008)Google Scholar
  35. 35.
    Verheest, F., Mace, R.L., Pillay, S.R., Hellberg, M.A.: Unified derivation of Korteweg-de Vries-Zakharov–Kuznetsov equations in multispecies plasmas, J. Phys. A: Math. Gen. 35, 795–806 (2002)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Zakharov, V.E., Kuznetsov, E.A.: On three dimensional solitons. Sov. Phys. JETP. 39, 285–286 (1974)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • David Lannes
    • 1
  • Felipe Linares
    • 2
  • Jean-Claude Saut
    • 3
  1. 1.Département de Mathématiques et ApplicationsÉcole Normale SupérieureParis Cedex 05France
  2. 2.IMPARio de JaneiroBrasil
  3. 3.Laboratoire de Mathématiques, UMR 8628Université Paris-Sud 11 et CNRSOrsay CedexFrance

Personalised recommendations