Skip to main content

Characters and Representations After 1897

  • Chapter
  • First Online:
The Mathematics of Frobenius in Context

Abstract

Frobenius’ papers of 1896–1897 marked the beginning of a new theory, a theory that continued to evolve in various directions for over a half-century. Frobenius himself, along with Burnside, made significant contributions to the theory after 1897, and many new ideas, viewpoints, and directions were introduced by Frobenius’ student Issai Schur (1875–1941), and then by Schur’s student Richard Brauer (1901–1977). In this chapter, these later developments will be sketched, with particular emphasis on matters that relate to the presentation in the previous sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since \(\hat{\sigma }(R) =\hat{\sigma } (x)\) with \(x\) specialized to x R  = 1, x S  = 0, S ≠ R, it is easy to see that \(\hat{\sigma }(z) =\hat{\sigma } (x)\hat{\sigma }(y)\) implies that \(\hat{\sigma }(AB) =\hat{\sigma } (A)\hat{\sigma }(B)\); that \(\hat{\sigma }(E) = I\) is immediate from the definition. Frobenius’ entire definition can be articulated without group matrices as follows: Extend σ to all of \(\mathfrak{H}\) by setting σ(R) = 0 for all \(R\notin \mathfrak{G}\). Then it is easy to check that \(\hat{\sigma }(S) =\big (\sigma _{ij}(S)\big)\), where \(\sigma _{ij}(S) =\sigma (A_{i}^{-1}SA_{j})\) for all \(S \in \mathfrak{H}\).

  2. 2.

    In his “Representation” paper, Frobenius had shown that if μ is any representation of \(\mathfrak{H}\), then the elementary divisors of \(\mu (x)\) are all linear [213, p. 87].

  3. 3.

    See Frobenius’ 1903 paper [222], which is discussed further on.

  4. 4.

    Letter dated 23 December 1893, and located in the archives of the Niedersächsiche Staats- und Universitätsbibliothek, Göttingen (Cod.  Ms. Philos. 205. Nr. 16). Although Frobenius was critical of Dedekind’s penchant for what he regarded as unnecessary abstraction, his admiration for Dedekind is also evident throughout these passages. The book that Weber planned became his classic Lehrbuch der Algebra [582, 583]. The edition of Dirichlet’s Vorlesungen über Zahlentheorie to which Frobenius referred was the forthcoming fourth edition of 1894.

  5. 5.

    The value χ (κ)(E) could also have been computed using, e.g., the coefficient C 3, 1, 0, 6 of \(x_{1}^{3}x_{2}x_{4}^{6}\), which equals − 3, for then sgnΔ(3, 1, 0, 6) = sgn − 540 =  − 1.

  6. 6.

    Young interpreted the product PQ of two permutations as Q followed by P, hence reading from right to left, whereas Frobenius adopted the reverse convention. I have followed Young’s convention in presenting Frobenius’ results.

  7. 7.

    On this matter, see Section 11.5 of my book [276].

  8. 8.

    Letter dated 15 July 1896.

  9. 9.

    Frobenius used the word “group” instead of “hypercomplex system” and in general used group-related terms to describe properties of hypercomplex systems.

  10. 10.

    Burnside of course meant “odd composite order,” since groups of prime order are simple.

  11. 11.

    If r is one of the \(\varphi (q - 1)\) primitive roots of q, then m is defined by r m ≡ p (mod q).

  12. 12.

    Using Burnside’s p a q b theorem, P. Hall generalized it to prove that \(\mathfrak{H}\) is solvable if it has the property that for every representation of its order as a product of two relatively prime integers, subgroups of those orders exist. Hall’s proof involved the notion of a Hall subgroup, which played a significant role in later work, including Feit and Thompson’s “odd-order paper” [162] discussed in the following paragraph.

  13. 13.

    A proof without characters of Burnside’s theorem on groups of order p a q b can be gleaned from the Feit–Thompson paper [162]. Relatively short proofs without characters were given in the 1970s by Goldschmidt [251] for p, q odd and by Matsuyama [436] for p = 2. These proofs utilize some of the modern ideas and results in group theory and are not as elementary as Burnside’s proof.

  14. 14.

    See the accounts by Aschbacher [9] and Gorenstein [252].

  15. 15.

    A more detailed discussion of Schur’s dissertation and its role in the history of the representation theory of Lie groups can be found in my book [276]. See especially Section 3 of Chapter 10.

  16. 16.

    In addition to these “absolute invariants,” more general invariants satisfying \(I(b^{\prime}) = {(\det \,A)}^{w}I(b)\), where w is a nonnegative integer, were also considered.

  17. 17.

    This and the following quotations are my translation of portions of the conclusion of Frobenius’ evaluation as transcribed by Biermann [22, p. 127].

  18. 18.

    Quoted by Biermann [22, p. 135]. Later, in a 1914 memorandum supporting Schur for a position, Frobenius expressed similar sentiments about Schur’s work in general: “As only a few other mathematicians do, he practices the Abelian art of correctly formulating problems, suitably transforming them, cleverly dismantling them, and then conquering them one by one” [22, pp. 139, 223]. After his death, Frobenius’ words were quoted by Planck when Schur was admitted to membership in the Berlin Academy of Sciences in 1922. See Schur, Gesammelte Abhandlungen 2, p. 414.

  19. 19.

    These words were written in a memorandum supporting Schur for a professorship [22, p. 224], but they are not at all an exaggeration of Schur’s accomplishments vis à vis the efforts of the Klein school.

  20. 20.

    The group \(\mathfrak{M}\) can be identified with the second cohomology group of \(\mathfrak{H}\) over \(\mathbb{C}\), but group cohomology did not exist at this time. On this and other anticipations of modern theories by Schur, see [406, p. 101]. See also the discussion in Section 15.6 below of Brauer’s work on Schur’s index theory and its connections with Galois cohomology.

  21. 21.

    Schur, Abhandlungen 1, 346–441.

  22. 22.

    For an exposition of Schur’s proof and its role in deriving Schur’s orthogonality relations for irreducible representations, see Curtis’ book [109, pp. 140ff.].

  23. 23.

    Frobenius used the word Kärrnerarbeit. See his memoranda of 1902 and 1914 to the Prussian Ministry of Culture regarding the possible appointment of Hilbert to a professorship in Berlin [22, pp. 209–210, 222–223].

  24. 24.

    The finiteness problem for a given type of invariant is to prove that there is a finite number of such invariants such that any invariant of the given type is expressible as a polynomial function of these.

  25. 25.

    The joint work is contained in Schur, Abhandlungen 2, 334–358, and Ostrowski, Papers 2, 127–151, and is discussed in my book on the history of Lie group theory [276, Ch. 10, §4].

  26. 26.

    I am grateful to the late Mrs. Brauer and to Walter Feit and Jonathan Alperin for kindly making Richard Brauer’s notes from these lectures available to me. A later version of Schur’s lectures was published by Grunsky [527].

  27. 27.

    I have discussed Cayley’s counting problem and its extensions by Molien and Schur (alluded to below) in [272] and [276, Ch. 7,§4, Ch. 10,§5].

  28. 28.

    For the full story, see my paper [274], and especially Chapters 1112 of my book [276].

  29. 29.

    For a clear and detailed discussion of the results in Schur’s paper [524], including sketches of some of the proofs, sometimes along more modern lines, see Curtis’ book [109, pp. 157ff.].

  30. 30.

    See Section 5 of Loewy’s paper [422]. Maschke’s theorem is actually valid for any field with characteristic not dividing the order of the group—a fact that is immediately clear from the proof Schur gave using his lemma [523, §3]—but Loewy was not interested in fields of finite characteristic [422, p. 59n].

  31. 31.

    For Schur’s other arithmetic researches on representation theory, see his Abhandlungen 1, 251–265 (1908), 295–311 (1909), 451–463 (1911).

  32. 32.

    See Encyclopedic Dictionary of Mathematics, 2nd edn., Art. 190.N.

  33. 33.

    The following presentation of Brauer’s work draws heavily on the articles on Brauer by Feit [160] and (especially) Green [256]. Not long after I had written it, Curtis’ book Pioneers of Representation Theory [109] appeared. The final two chapters provide a much more extensive and mathematically detailed treatment of Brauer’s work. In particular, Brauer’s theory of blocks and its application to the theory of finite groups [109, Ch. VII, §3] is not covered in my presentation.

  34. 34.

    Wedderburn’s work and its historical background have been treated in detail by Parshall [461].

  35. 35.

    See the personal reminiscences of Alfred Brauer, Richard Brauer’s brother, on p. vii of Schur’s Abhandlungen 1.

  36. 36.

    See Section 59 of the 1923 edition [544] or Section 69 of the second edition of 1927 [545].

  37. 37.

    According to Brauer’s own recollections, Papers 1, p. xviii.

  38. 38.

    If \({\omega }^{{p}^{a} } = 1\), then the binomial expansion implies that \({(\omega -1)}^{{p}^{a} } \equiv 0\;(\mathrm{mod}\,p)\), and so ω = 1 in \(\mathbb{K}_{p}\).

  39. 39.

    After giving his proof, Speiser wrote “damit ist bewiesen, dass wir in den irreduziblen algebraischen Darstellungen alle irreduziblen Darstellungen im GF(p n) gefunden haben” [1923:167; 1927:223].

  40. 40.

    In 1947, Brauer used his induction theorem (discussed below) to show that \(\varepsilon\) can be taken as a primitive mth root of unity, where m is the least common multiple of the orders of elements in \(\mathfrak{H}\). This proof did not use Brauer characters. See Brauer’s Collected Papers 1, 553.

  41. 41.

    For a lucid historical overview of the history of class field theory and references to the primary and secondary literature, see Conrad’s exposition [105].

  42. 42.

    At this time, Artin still spoke of “substitutions” rather than automorphisms.

  43. 43.

    Seven years later, in his second paper on generalized L-functions [8], Artin showed how to deal as well with the case of ramified primes \(\mathfrak{p}\).

  44. 44.

    See the footnote to Theorem 9.18.

  45. 45.

    See following Theorem 9.20.

  46. 46.

    See Brauer’s remarks [34, pp. 502–503, 503, n. 3].

  47. 47.

    Recall that \(\mathfrak{H}^{\prime}\) is generated by all products of the form \(H_{1}H_{2}H_{1}^{-1}H_{2}^{-1}\), with \(H_{1},H_{2} \in \mathfrak{H}\). Since χ i is a Dedekind character, \(\chi _{i}(H_{1}H_{2}H_{1}^{-1}H_{2}^{-1}) =\chi _{i}(H_{1})\chi _{i}(H_{2})\chi _{i}{(H_{1})}^{-1}\chi _{i}{(H_{2})}^{-1} = 1\) because complex numbers commute.

  48. 48.

    A p-primary subgroup is a subgroup every element of which has order a power of p. Since \(\mathfrak{H}\) is finite, the p-primary subgroup has order that is a power of p.

  49. 49.

    Gelbart [250] has written an illuminating expository account of the Langlands program that indicates how Artin’s conjecture fits into it. See especially pp. 203–204 and 208–209. Langlands’ expository article [396] also conveys an idea of the role in the theory of numbers played by representation theory.

References

  1. E. Artin. Über eine neue Art von L-Reihen. Abh. aus d. math. Seminar d. Univ. Hamburg, 1923, 3:89–108, 1923. Reprinted in Papers, 105–124.

    Google Scholar 

  2. E. Artin. Beweis des allgemeinen Reziprozitätsgesetzes. Abh. aus d. math. Seminar d. Univ. Hamburg, 5:353–363, 1927. Reprinted in Papers, 131–141.

    Google Scholar 

  3. E. Artin. Zur Theorie der L-Reihen mit allgemeinen Gruppencharakteren. Abh. aus d. math. Seminar d. Univ. Hamburg, 1930, 8:292–306, 1930. Reprinted in Papers, 165–179.

    Google Scholar 

  4. M. Aschbacher. The classification of the finite simple groups. The Mathematical Intelligencer, 3:59–65, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  5. K.-R. Biermann. Die Mathematik und ihre Dozenten an der Berliner Universität 1810–1920. Akademie-Verlag, Berlin, 1973.

    MATH  Google Scholar 

  6. R. Brauer. Über die Darstellung von Gruppen in Galoisschen Feldern. Actualités Sci. Industrielles, 195:1–15, 1935. Reprinted in Papers 1, 323–335.

    Google Scholar 

  7. R. Brauer. On the representation of a group of order g in the field of the g-th roots of unity. American Journal of Math., 67:461–471, 1945. Reprinted in Papers 1, 461–471.

    Google Scholar 

  8. R. Brauer. On Artin’s L-series with general group characters. Annals of Math., 48:502–514, 1947. Reprinted in Papers 1, 539–551.

    Google Scholar 

  9. R. Brauer and C. Nesbitt. On the regular representations of algebras. Proc. Nat. Acad. Sci. USA, 23:236–240, 1937. Reprinted in R. Brauer, Papers 1, 190–194.

    Google Scholar 

  10. R. Brauer and C. Nesbitt. On the modular representations of groups of finite order I. University of Toronto Studies, 4:1–21, 1937. Reprinted in R. Brauer, Papers 1, 336–354.

    Google Scholar 

  11. R. Brauer and E. Noether. Über minimale Zerfällungskörper irreduzibler Darstellungen. Sitzungsberichte der Akademie der Wiss. zu Berlin 1927 physikalisch-math. Klasse, 1927. Reprinted in Brauer Papers 1, 221–228 and Noether Abhandlungen, 552–559.

    Google Scholar 

  12. W. Burnside. Theory of Groups of Finite Order. The Univeristy Press, Cambridge, 1897.

    MATH  Google Scholar 

  13. W. Burnside. On some properties of groups of odd order. Proceedings London Math. Soc., 33:162–185, 1900.

    Article  MathSciNet  Google Scholar 

  14. W. Burnside. On some properties of groups of odd order (second paper). Proceedings London Math. Soc., 33:257–268, 1900.

    Article  MathSciNet  Google Scholar 

  15. W. Burnside. On transitive groups of degree n and class n − 1. Proceedings London Math. Soc., 32:240–246, 1900.

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Burnside. On groups of order p α q β. Proceedings London Math. Soc., 2(1):388–392, 1904.

    Article  MathSciNet  Google Scholar 

  17. W. Burnside. On the complete reduction of any transitive permutation group and on the arithmetical nature of the coefficients in its irreducible components. Proceedings London Math. Soc., 3(2):239–252, 1905.

    Article  MathSciNet  MATH  Google Scholar 

  18. W. Burnside. Theory of Groups of Finite Order. The University Press, Cambridge, 2nd edition, 1911.

    MATH  Google Scholar 

  19. É. Cartan. Les groupes bilinéaires et les systèmes de nombres complexes. Ann. Fac. Sci. Toulouse, 12:B1–B99, 1898. Reprinted in Oeuvres II.1, 7–105.

    Google Scholar 

  20. K. Conrad. History of class field theory. This unpublshed essay is available online as a PDF file at www.math.uconn.edu/~kconrad/blurbs/gradnumthy/cfthistory.pdf.

  21. J. H. Conway et al., editors. Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups. Clarendon Press, Oxford, 1985.

    Google Scholar 

  22. C. W. Curtis. Pioneers of Representation Theory: Frobenius, Burnside, Schur and Brauer. American Mathematical Society, 1999.

    Google Scholar 

  23. L. E. Dickson. On the group defined for any given field by the multiplication table of any given finite group. Trans. American Math. Soc., 3:285–301, 1902. Reprinted in Papers 2, 75–91.

    Google Scholar 

  24. L. E. Dickson. On the groups defined for an arbitrary field by the multiplication tables of certain finite groups. Proceedings London Math. Soc., 35:68–80, 1902. Reprinted in Papers 6, 176–188.

    Google Scholar 

  25. L. E. Dickson. Modular theory of group characters. Bull. American Math. Soc., 13:477–488, 1907. Reprinted in Papers 4, 535–546.

    Google Scholar 

  26. L. E. Dickson. Modular theory of group-matrices. Trans. American Math. Soc., 8:389–398, 1907. Reprinted in Papers 2, 251–260.

    Google Scholar 

  27. W. Feit. Richard D. Brauer. Bull. American Math. Soc., 1(2):1–20, 1979.

    Google Scholar 

  28. W. Feit and J. G. Thompson. A solvability criterion for finite groups and some consequences. Proc. Nat. Acad. Sci. U.S.A., 48:968–970, 1962.

    Article  MathSciNet  MATH  Google Scholar 

  29. W. Feit and J. G. Thompson. Solvability of groups of odd order. Pacific Journal of Math., 13:755–1029, 1963.

    MathSciNet  Google Scholar 

  30. G. Frobenius. Über lineare Substitutionen und bilineare Formen. Jl. für die reine u. angew. Math., 84:1–63, 1878. Reprinted in Abhandlungen 1, 343–405.

    Google Scholar 

  31. G. Frobenius. Über Beziehungen zwischen den Primidealen eines algebraischen Körpers und den Substitutionen seiner Gruppe. Sitzungsberichte der Akademie der Wiss. zu Berlin, pages 689–703, 1896. Reprinted in Abhandlungen 2, 719–733.

    Google Scholar 

  32. G. Frobenius. Über die Darstellung der endlichen Gruppen durch lineare Substitutionen. Sitzungsberichte der Akademie der Wiss. zu Berlin, pages 994–1015, 1897. Reprinted in Abhandlungen 3, 82–103.

    Google Scholar 

  33. G. Frobenius. Über Relationen zwischen den Charakteren einer Gruppe und denen ihrer Untergruppen. Sitzungsberichte der Akademie der Wiss. zu Berlin, pages 501–515, 1898. Reprinted in Abhandlungen 3, 104–118.

    Google Scholar 

  34. G. Frobenius. Über die Composition der Charaktere einer Gruppe. Sitzungsberichte der Akademie der Wiss. zu Berlin, pages 330–339, 1899. Reprinted in Abhandlungen 3, 119–128.

    Google Scholar 

  35. G. Frobenius. Über die Darstellung der endlichen Gruppen durch lineare Substitutionen II. Sitzungsberichte der Akademie der Wiss. zu Berlin, pages 482–500, 1899. Reprinted in Abhandlungen 3, 129–147.

    Google Scholar 

  36. G. Frobenius. Über die Charaktere der symmetrischen Gruppe. Sitzungsberichte der Akademie der Wiss. zu Berlin, pages 516–534, 1900. Reprinted in Abhandlungen 3, 148–166.

    Google Scholar 

  37. G. Frobenius. Über die Charactere der alternirenden Gruppe. Sitzungsberichte der Akademie der Wiss. zu Berlin, pages 303–315, 1901. Reprinted in Abhandlungen 3, 167–179.

    Google Scholar 

  38. G. Frobenius. Über auflösbare Gruppen III. Sitzungsberichte der Akademie der Wiss. zu Berlin, pages 849–875, 1901. Reprinted in Abhandlungen 3, 180–188.

    Google Scholar 

  39. G. Frobenius. Über auflösbare Gruppen IV. Sitzungsberichte der Akademie der Wiss. zu Berlin, pages 1216–1230, 1901. Reprinted in Abhandlungen 3, 189–203.

    Google Scholar 

  40. G. Frobenius. Über Gruppen der Ordnung p α q β. Acta Mathematica, 26:189–198, 1902. Reprinted in Abhandlungen 3, 210–219.

    Google Scholar 

  41. G. Frobenius. Über die charakteristischen Einheiten der symmetrischen Gruppe. Sitzungsberichte der Akademie der Wiss. zu Berlin, pages 328–358, 1903. Reprinted in Abhandlungen 3, 244–274.

    Google Scholar 

  42. G. Frobenius. Theorie der hyperkomplexen Grössen. Sitzungsberichte der Akademie der Wiss. zu Berlin, pages 504–537, 1903. Reprinted in Abhandlungen 3, 284–317.

    Google Scholar 

  43. G. Frobenius. Theorie der hyperkomplexen Grössen II. Sitzungsberichte der Akademie der Wiss. zu Berlin, pages 634–645, 1903. Reprinted in Abhandlungen 3, 318–329.

    Google Scholar 

  44. G. Frobenius. Über die Charaktere der mehrfach transitiven Gruppen. Sitzungsberichte der Akademie der Wiss. zu Berlin, pages 558–571, 1904. Reprinted in Abhandlungen 3, 335–348.

    Google Scholar 

  45. G. Frobenius. Über einen Fundamentalsatz der Gruppentheorie II. Sitzungsberichte der Akademie der Wiss. zu Berlin, pages 428–437, 1907. Reprinted in Abhandlungen 3, 394–403.

    Google Scholar 

  46. G. Frobenius and I. Schur. Über die reellen Darstellungen der endlichen Gruppen. Sitzungsberichte der Akademie der Wiss. zu Berlin, pages 186–208, 1906. Reprinted in Frobenius, Abhandlungen 3, 355–377.

    Google Scholar 

  47. S. Gelbart. An elementary introduction to the Langlands program. Bulletin of the American Mathematical Society, 10(2):177–219, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  48. D. Goldschmidt. A group theoretic proof of the p a q b theorem for odd primes. Mathematische Zeitschrift, 13:373–375, 1970.

    Article  MathSciNet  Google Scholar 

  49. D. Gorenstein. Finite Simple Groups. An Introduction to Their Classification. Plenum Press, New York and London, 1982.

    Google Scholar 

  50. J. A. Green. Richard Dagobert Brauer. Bulletin London Math. Soc., 10:317–342, 1978. Reprinted in Richard Brauer, Papers 1, xxii–xliii.

    Google Scholar 

  51. T. Hawkins. Cayley’s counting problem and the representation of Lie algebras. In Proceedings, International Congress of Mathematicians, Berkeley 1986. American Mathematical Society, Providence, 1987.

    Google Scholar 

  52. T. Hawkins. From general relativity to group representations. The background to Weyl’s papers of 1925–26. In Matériaux pour l’historie des mathématiques au XXe Siècle. Actes du colloque à la mémoire de Jean Dieudonné. Société Mathématique de France, Séminaires et Congrès No. 3, pages 69–100. Soc. math. de France, Paris, 1998.

    Google Scholar 

  53. T. Hawkins. Emergence of the Theory of Lie Groups. An Essay on the History of Mathematics 1869–1926. Springer, New York, 2000.

    Google Scholar 

  54. E. Hecke. Über die L-Funktionen und den Dirichletschen Primzahlsatz für einen beliebigen Zahlkörper. Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der Georg-Augustus-Universität zu Göttingen, pages 299–318, 1917. Reprinted in Werke, 178–197.

    Google Scholar 

  55. D. Hilbert. Die Theorie der algebraischen Zahlkörper. Jahresbericht der Deutschen Mathematiker-Vereinigung, 4:175–546, 1897. Reprinted in Abhandlungen 1, 63–363.

    Google Scholar 

  56. A. Hurwitz. Zur Invariantentheorie. Math. Ann., 45:381–404, 1894. Reprinted in Werke 2, 508–532.

    Google Scholar 

  57. A. Hurwitz. Über die Erzeugung der Invarianten durch Integration. Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der Georg-Augustus-Universität zu Göttingen, pages 71–90, 1897. Reprinted in Werke 2, 546–564.

    Google Scholar 

  58. F. Klein. Über binäre Formen mit linearen Transformationen in sich selbst. Math. Ann., 9: 183–208, 1875. Reprinted in Abhandlungen 2, 275–301.

    Google Scholar 

  59. R. Langlands. Representation theory: Its rise and its role in number theory. In Proceedings of the Gibbs Symposium Yale University, May 15–17, 1989, pages 181–210. American Mathematical Society, 1990.

    Google Scholar 

  60. W. Ledermann. Issai Schur and his school in Berlin. Bull. London Math. Soc., 15:97–106, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  61. A. Loewy. Über die Reducibilität der Gruppen linearer homogener Substitutionen. Trans. American Math. Soc., 4:44–64, 1903.

    MathSciNet  MATH  Google Scholar 

  62. A. Loewy. Über die Reducibilität der reellen Gruppen linearer homogener Substitutionen. Trans. American Math. Soc., 4:171–177, 1903.

    MathSciNet  MATH  Google Scholar 

  63. H. Maschke. Über den arithmetischen Charakter der Coefficienten der Substitutionen endlicher linearer Substitutionsgruppen. Math. Ann., 50:492–498, 1898.

    Article  MathSciNet  MATH  Google Scholar 

  64. H. Matsuyama. Solvability of groups of order 2a p b. Osaka Jl. of Math., 10:375–378, 1973.

    MathSciNet  MATH  Google Scholar 

  65. T. Molien. Über Systeme höherer complexer Zahlen. Math. Ann., 41:83–156, 1893.

    Article  MathSciNet  MATH  Google Scholar 

  66. T. Molien. Über die Invarianten der linearen Substitutionsgruppen. Sitzungsberichte der Akademie der Wiss. zu Berlin 1897, pages 1152–1156, 1898.

    Google Scholar 

  67. E. Netto. Untersuchungen aus der Theorie der Substitutionen-Gruppen. Jl. für die reine u. angew. Math., 103:321–336, 1888.

    MATH  Google Scholar 

  68. E. Noether. Hypercomplexe Grössen und Darstellungstheorie. Mathematische Zeitschrift, 30:641–692, 1929. Reprinted in Abhandlungen, 563–614.

    Google Scholar 

  69. K. H. Parshall. Joseph H.M. Wedderburn and the structure theory of algebras. Archive for History of Exact Sciences, 32:223–349, 1985.

    Google Scholar 

  70. I. Schur. Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen. Dieterich’schen Univ.-Buchdruckerei, Göttingen, 1901. Schur’s dissertation. Reprinted in Abhandlungen 1, 1–72.

    Google Scholar 

  71. I. Schur. Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen. Jl. für die reine u. angew. Math., 127:20–50, 1904. Reprinted in Abhandlungen 1, 86–127.

    Google Scholar 

  72. I. Schur. Neue Begründung der Theorie der Gruppencharaktere. Sitzungsberichte der Akademie der Wiss. zu Berlin, Physikalisch-Math. Kl. 1905, pages 406–432, 1905. Reprinted in Abhandlungen 1, 143–169.

    Google Scholar 

  73. I. Schur. Arithmetische Untersuchungen über endliche Gruppen linearer Substitutionen. Sitzungsberichte der Akademie der Wiss. zu Berlin, Physikalisch-Math. Kl. 1906, pages 164–184, 1906. Reprinted in Abhandlungen 1, 177–197.

    Google Scholar 

  74. I. Schur. Einige Bemerkungen zu der vorstehenden Arbeit A. Speiser, Zahlentheoretische Sätze aus der Gruppentheorie. Mathematische Zeitschrift, 5:7–10, 1919. Reprinted in Abhandlungen 2, 276–279.

    Google Scholar 

  75. I. Schur. Neue Anwendungen der Integralrechnung auf Probleme der Invariantentheorie. Sitzungsberichte der Akademie der Wiss. zu Berlin, Physikalisch-Math. Kl. 1924, pages 189–208, 1924. Reprinted in Abhandlungen 2, 440–459.

    Google Scholar 

  76. I. Schur. Vorlesungen über Invariantentheorie. Springer-Verlag, Berlin, 1968. H. Grunsky, ed.

    Google Scholar 

  77. A. Speiser. Zahlentheoretische Sätze aus der Gruppentheorie. Mathematische Zeitschrift, 5:1–6, 1919.

    Article  MathSciNet  MATH  Google Scholar 

  78. A. Speiser. Die Theorie der Gruppen von endlicher Ordnung. Springer-Verlag, Berlin, 1923.

    MATH  Google Scholar 

  79. A. Speiser. Die Theorie der Gruppen von endlicher Ordnung. Springer-Verlag, Berlin, 2nd edition, 1927.

    Book  MATH  Google Scholar 

  80. N. Tchebotarev. Die bestimmung der dichtigkeit einer menge von primzahlen, welche zu einer gegebenen substitutionsklasse gehören. Math. Ann., 95:191–228, 1926.

    Article  MathSciNet  Google Scholar 

  81. H. W. Turnbull. Alfred Young, 1873–1940. Journal London Math. Soc., 16:194–207, 1941. Reprinted in The Collected Papers of Alfred Young, Toronto, 1977 pp. xv–xxvii.

    Google Scholar 

  82. H. Weber. Lehrbuch der Algebra, volume 1. F. Vieweg & Sohn, Braunschweig, 1895. The second ed. (1898), was reprinted with corrections and some new notation as a third edition by Chelsea Publishing Co., New York, 1961.

    Google Scholar 

  83. H. Weber. Lehrbuch der Algebra, volume 2. F. Vieweg & Sohn, 1896. Second ed. 1899, reprinted with corrections and some new notation as a third edition by Chelsea Publishing Co., New York, 1961.

    Google Scholar 

  84. H. Weber. Lehrbuch der Algebra, volume 3. Braunschweig, F. Vieweg & Sohn, 2nd edition, 1908. Reprinted with corrections and some new notation as a third edition by Chelsea Publishing Co., New York, 1961.

    Google Scholar 

  85. H. Weyl. Zur Theorie der Darstellung der einfachen kontinuierlichen Gruppen. (Aus einem Schreiben an Herrn I. Schur.) Sitzungsberichte der Akademie der Wiss. zu Berlin, pages 338–345, 1924. Reprinted in Abhandlungen 2, 453–460.

    Google Scholar 

  86. H. Weyl. Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen durch lineare Transformationen. Kap. I–III und Nachtrag. Mathematische Zeitschrift, 23–24:271–309 (vol. 23), 328–395, 789–791 (vol. 24), 1925–1926. Reprinted in Abhandlungen 2, 543–647.

    Google Scholar 

  87. H. Weyl and F. Peter. Die Vollständigkeit der primitiven Darstellungen einter geschlossenen kontinuierlichen Gruppe. Math. Ann., 97:737–755, 1927. Reprinted in Weyl, Abhandlungen 3, 58–75.

    Google Scholar 

  88. E. P. Wigner. Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren. Braunschweig, 1931.

    Google Scholar 

  89. A. Young. On quantitative substitutional analysis. Proceedings London Math. Soc., 33:97–146, 1901. Reprinted in Papers, 42–91.

    Google Scholar 

  90. A. Young. On quantitative substitutional analysis. Proceedings London Math., 34:361–397, 1902. Reprinted in Papers, 92–128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hawkins, T. (2013). Characters and Representations After 1897. In: The Mathematics of Frobenius in Context. Sources and Studies in the History of Mathematics and Physical Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6333-7_15

Download citation

Publish with us

Policies and ethics