Skip to main content

Alternative Routes to Representation Theory

  • Chapter
  • First Online:
The Mathematics of Frobenius in Context

Abstract

The correspondence between Dedekind and Frobenius makes it clear that if Dedekind had not decided to introduce and study group determinants—a subject with no established tradition and really outside his main interests in algebraic number theory—or if he had decided not to communicate his ideas on group determinants to Frobenius, especially given Frobenius’ complete lack of curiosity about Dedekind’s allusion to a connection between hypercomplex numbers and groups, it is unlikely that Frobenius would be known as the creator of the theory of group characters and representations. This is not to say that the theory would have remained undiscovered for a long time. On the contrary, three lines of mathematical investigation were leading to essentially the same theory that Frobenius had begun to explore: (1) the theory of noncommutative hypercomplex number systems; (2) Lie’s theory of continuous groups; and (3) Felix Klein’s research program on a generalized Galois theory. The main purpose of this chapter is to briefly indicate how these lines of investigation were leading—or in some cases did lead—to the results of Frobenius’ theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See my paper [267] for further details.

  2. 2.

    Actually, Poincaré did not explicitly assume the existence of a two-sided identity, but he—and those who followed him—made an equivalent assumption.

  3. 3.

    On Lie’s early work on continuous groups and its historical background, see Chapters 13 of my book [276] on the history of Lie groups.

  4. 4.

    On Killing’s work and its background, see Chapters 4 and 5 of my book [276].

  5. 5.

    In what follows, I have drawn upon N.F. Kanounov’s biography of Molien [335, 14–36].

  6. 6.

    For a discussion of Molien’s actual approach to hypercomplex systems in general and, in particular, an indication of how he proved his theorem on simple systems by means of analogies with Killing’s work, see Section 3 of my paper [267].

  7. 7.

    Here “simply transitive” means simply transitive on an open dense subset of \({\mathbb{C}}^{n}\). This follows directly from the fact that u R is invertible for all (u 1, , u n ) in an open dense set.

  8. 8.

    The Killing form of a Lie algebra is related to the quadratic form ψ 2(u) by \(K(\mathbf{u},\mathbf{u}) = {[\psi _{1}(\mathbf{u})]}^{2} - 2\psi _{2}(\mathbf{u})\), which reduces to \(K(\mathbf{u},\mathbf{u}) = -2\psi _{2}(\mathbf{u})\) for any Lie algebra satisfying \(\mathfrak{g}^{\prime} = \mathfrak{g}\) and so in particular for semisimple Lie algebras. For a comparative discussion of the contributions of Killing and Cartan to the structure of Lie algebras, see Chapters 5 and 6 of my book [276].

  9. 9.

    Poincaré was familiar with Frobenius’ theory, which in 1912 he deemed the most important advance in the theory of finite groups in many years [486, p. 141], and he realized its connections with the work of Cartan. In 1903 [485, p. 106], he pointed out that “les théories de ces deux savants mathématiciens s’éclairent mutuellement.”

  10. 10.

    For references to the literature on the normal problem see [343, 608]. It should also be noted that Frobenius’ student I. Schur applied Frobenius’ theory of group representations to develop a general theory of projective representations. See Section 15.5.

  11. 11.

    In presenting Molien’s results, his notation has been slightly modified to bring it into line with that of Frobenius. In particular, the letters h, k, l have been given the same significance here as with Frobenius.

  12. 12.

    See the remarks following (13.21).

  13. 13.

    Molien’s letter was published (in Russian translation) by Kanounov [334, p. 57]. The rest of his brief correspondence with Frobenius (in Russian translation) may be found in Kanounov’s biography [335].

  14. 14.

    Molien’s proof is similar to that given later by Burnside [56, p. 299], who states the theorem in terms of a faithful representation \(\mu: \mathfrak{H} \rightarrow \mathfrak{G}\) of an abstract group \(\mathfrak{H}\).

  15. 15.

    Letter to Dedekind dated 24 February 1898.

  16. 16.

    According to Kanounov [333], Molien was refused the professorship at Dorpat as a consequence of the czarist regime’s Russification policy.

  17. 17.

    Letter to Dedekind dated 7 May 1896.

  18. 18.

    See pp. 273–279 of my paper [267] for a discussion of Burnside’s work in general and this point in particular.

  19. 19.

    See in this connection Loewy’s papers [419] and [420, p. 561n], Moore’s paper [448], and Klein’s announcement [344].

  20. 20.

    Picard failed to see that Poincaré’s technique of summing over a group to generate invariants (see below), which he himself had extended to certain countably infinite subgroups of \(\mathrm{PGL}(3, \mathbb{C})\) [472], would yield a completely general proof of Theorem 14.1.

  21. 21.

    See, e.g., Poincaré’s papers [476, p. 97], [475, p. 182] or the discussion in Gray’s book [255].

  22. 22.

    Hurwitz’s paper was mainly concerned with the extension of the technique to continuous groups. His paper played an important role in the extension of Frobenius’ theory of characters and representations to continuous groups as indicated below in Section 15.5.

References

  1. W. Burnside. Notes on the theory of groups of finite order. Proceedings London Math. Soc., 26:191–214, 1895.

    MathSciNet  MATH  Google Scholar 

  2. W. Burnside. On the continuous group that is defined by any given group of finite order. Proceedings London Math. Soc., 29:207–225, 1898.

    MathSciNet  MATH  Google Scholar 

  3. W. Burnside. On the continuous group that is defined by any given group of finite order (second paper). Proceedings London Math. Soc., 29:546–565, 1898.

    MathSciNet  Google Scholar 

  4. W. Burnside. Theory of Groups of Finite Order. The University Press, Cambridge, 2nd edition, 1911.

    MATH  Google Scholar 

  5. É. Cartan. Sur la structure des groupes de transformations finis et continus. Nony, Paris, 1894. Reprinted in Oeuvres 1, 137–287.

    Google Scholar 

  6. É. Cartan. Sur certains groups algébriques. Comptes Rendus Acad. Sci. Paris, 120:545–548, 1895. Reprinted in Oeuvres I, 289–292.

    Google Scholar 

  7. G. Frobenius. Über Gruppencharaktere. Sitzungsberichte der Akademie der Wiss. zu Berlin, pages 985–1021, 1896. Reprinted in Abhandlungen 3, 1–37.

    Google Scholar 

  8. G. Frobenius. Über die Primfaktoren der Gruppendeterminante. Sitzungsberichte der Akademie der Wiss. zu Berlin, pages 1343–1382, 1896. Reprinted in Abhandlungen 3, 38–77.

    Google Scholar 

  9. G. Frobenius. Über die Darstellung der endlichen Gruppen durch lineare Substitutionen. Sitzungsberichte der Akademie der Wiss. zu Berlin, pages 994–1015, 1897. Reprinted in Abhandlungen 3, 82–103.

    Google Scholar 

  10. G. Frobenius. Über die Composition der Charaktere einer Gruppe. Sitzungsberichte der Akademie der Wiss. zu Berlin, pages 330–339, 1899. Reprinted in Abhandlungen 3, 119–128.

    Google Scholar 

  11. G. Frobenius. Theorie der hyperkomplexen Grössen II. Sitzungsberichte der Akademie der Wiss. zu Berlin, pages 634–645, 1903. Reprinted in Abhandlungen 3, 318–329.

    Google Scholar 

  12. J. Gray. Linear Differential Equations and Group Theory from Riemann to Poincaré. Birkhäuser, Boston, 2nd edition, 2000.

    MATH  Google Scholar 

  13. T. Hawkins. Hypercomplex numbers, Lie groups and the creation of group representation theory. Arch. Hist. Exact Sci., 8:243–287, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Hawkins. Emergence of the Theory of Lie Groups. An Essay on the History of Mathematics 1869–1926. Springer, New York, 2000.

    Google Scholar 

  15. A. Hurwitz. Über die Erzeugung der Invarianten durch Integration. Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der Georg-Augustus-Universität zu Göttingen, pages 71–90, 1897. Reprinted in Werke 2, 546–564.

    Google Scholar 

  16. N.F. Kanounov. O rabotakh F.E. Molina po teorii predstavlenii konechnykh grupp. Istoriya i metodologiya estestvennykh nauk, 17:57–88, 1966.

    Google Scholar 

  17. N.F. Kanounov. O rabotakh F.E. Molina po teorii predstavlenii konechnykh grupp. Istoriya i metodologiya estestvennykh nauk, 11:56–68, 1971.

    Google Scholar 

  18. N.F. Kanounov. Fedor Eduardovich Molin. Moscow, 1983.

    Google Scholar 

  19. F. Klein. Über binäre Formen mit linearen Transformationen in sich selbst. Math. Ann., 9: 183–208, 1875. Reprinted in Abhandlungen 2, 275–301.

    Google Scholar 

  20. F. Klein. Vorlesungen über das Ikosaeder. Teubner, Leipzig, 1884.

    Google Scholar 

  21. F. Klein. Lectures on Mathematics. Macmillan, New York and London, 1894.

    Google Scholar 

  22. F. Klein. Über einen Satz aus der Theorie der endlichen (discontinuirlichen) Gruppen linearer Substitutionen beliebig vieler Veränderlicher. Jahresbericht der Deutschen Mathematiker-Vereinigung, 5:57, 1897.

    MATH  Google Scholar 

  23. S. Lie. Über irreduzible Berührungstransformationsgruppen. Berichte über d. Verh. d. Sächsischen Gesell. der Wiss. math.-phys. Klasse, 1889, pages 320–327, 1889. Reprinted in Abhandlungen 6, 260–266.

    Google Scholar 

  24. A. Loewy. Sur les formes définies à indéterminées conjuguées de M. Hermite. Comptes Rendus Acad. Sci. Paris, 123:168–171, 1896.

    Google Scholar 

  25. A. Loewy. Über bilineare Formen mit conjugirt imäginaren Variabeln. Math. Ann., 50:557–576, 1898.

    Article  MathSciNet  MATH  Google Scholar 

  26. H. Maschke. Über den arithmetischen Charakter der Coefficienten der Substitutionen endlicher linearer Substitutionsgruppen. Math. Ann., 50:492–498, 1898.

    Article  MathSciNet  MATH  Google Scholar 

  27. H. Maschke. Beweis des Satzes, dass diejenigen endlichen linearen Substitutionsgruppen, in welchen einige durchgehends verschwindende Coefficienten auftreten, intransitiv sind. Math. Ann., 52:363–368, 1899.

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Molien. Über Systeme höherer complexer Zahlen. Math. Ann., 41:83–156, 1893.

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Molien. Eine Bemerkung zur Theorie der homogenen Substitutionsgruppen. Sitzungsberichte der Naturforscher-Gesellschaft b.d. Univ Jurjeff (Dorpat), 11:259–274, 1897.

    Google Scholar 

  30. T. Molien. Über die Anzahl der Variabeln einer irreductiblen Substitutionsgruppe. Sitzungsberichte der Naturforscher-Gesellschaft b.d. Univ. Jurjeff (Dorpat), 11:277–288, 1897.

    Google Scholar 

  31. T. Molien. Über die Invarianten der linearen Substitutionsgruppen. Sitzungsberichte der Akademie der Wiss. zu Berlin 1897, pages 1152–1156, 1898.

    Google Scholar 

  32. E. H. Moore. A universal invariant for finite groups of linear substitutions: with applications to the theory of the canonical form of a linear substitution of finite period. Math. Ann., 50:213–219, 1898.

    Article  MathSciNet  MATH  Google Scholar 

  33. É. Picard. Sur une classe de groupes discontinus de substitutions linéaires et sur les fonctions de deux variables indépendantes restant invariables par ces substitutions. Acta Mathematica, 1:297–320, 1882. Reprinted in Oeuvres 1, 311–334.

    Google Scholar 

  34. É. Picard. Remarque sur les groupes linéaires d’ordre fini à trois variables. Bull. Soc. Math. France, 15:152–155, 1887. Reprinted in Oeuvres 1, 597–600.

    Google Scholar 

  35. H. Poincaré. Sur les fonctions fuchsiennes. Acta Mathematica, 1:193–295, 1882. Reprinted in Oeuvres 2, 169–257.

    Google Scholar 

  36. H. Poincaré. Sur les fonctions uniformes qui se reproduisent par des substitutions linéaires. Math. Ann., 19:553–564, 1882. Reprinted in Oeuvres 2, 92–105.

    Google Scholar 

  37. H. Poincaré. Sur les nombres complexes. Comptes Rendus Acad. Sci. Paris, 99:740–742, 1884. Reprinted in Oeuvres 5, 77–79.

    Google Scholar 

  38. H. Poincaré. Sur l’intégration algébrique des équations linéaires et les périodes des intégrales abéliennes. Jl. des math. pures et appl., 9(5):139–212, 1903. Reprinted in Oeuvres 3, 106–166.

    Google Scholar 

  39. H. Poincaré. Rapport sur les travaux de M. Cartan. fait à la faculté des sciences d’Université de Paris. Acta Mathematica, 38:137–145, 1912.

    Google Scholar 

  40. K. Weierstrass. Zur Theorie der aus n haupteinheiten gebildeten complexen Grössen. Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der Georg-Augustus-Universität zu Göttingen, pages 395–414, 1884. Reprinted in Werke 2, 311–332.

    Google Scholar 

  41. A. Wiman. Über die Darstellung der symmetrischen und alternirenden Vertauschungsgruppen als Collineationsgruppen von möglichst geringer Dimensionzahl. Math. Ann., 52:243–270, 1899.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hawkins, T. (2013). Alternative Routes to Representation Theory. In: The Mathematics of Frobenius in Context. Sources and Studies in the History of Mathematics and Physical Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6333-7_14

Download citation

Publish with us

Policies and ethics