Multi-Target Tracking

Chapter

Abstract

Multi-target tracking refers to sequential estimation of the number of targets and their states (positions, velocities, etc.) tagged by a unique label. Hence the output of a tracking algorithm are tracks, where a track represents a labeled temporal sequence of state estimates, associated with the same target.

Keywords

Covariance Azimuth 

References

  1. 1.
    K. Panta, “Improved probability hypothesis density (PHD) filter for multitarget tracking”, in Proc. Int. Conf. Intelligent Sensing and Inform. Processing, (Bangalore, India), pp. 213–218, 2005.Google Scholar
  2. 2.
    D. E. Clark, J. Bell, Y. de Saint-Pern, and Y. Petillot, “PHD filter for multi-target tracking in 3D sonar”, in Proc. IEEE OCEANS-05-Europe, (Brest, France), pp. 265–270, 2005.Google Scholar
  3. 3.
    L. Lin, Y. bar Shalom, and T. Kirubarajan, “Track labelling and PHD filter for multitarget tracking,” IEEE Trans Aerospace and Electronic Systems, vol. 42, no. 3, pp. 778–795, 2006.Google Scholar
  4. 4.
    E. Maggio, M. Taj, and A. Cavallaro, “Efficient multitarget visual tracking using random finite sets”, IEEE Trans. Circuits & Systems for Video Technology, vol. 18, no. 8, pp. 1016–1027, 2008.Google Scholar
  5. 5.
    D. G. Danu, T. Lang, T. Kirubarajan, “Assignment-based particle labeling for PHD particle filter”, in, Proc. SPIE, vol. 7445, 2009.Google Scholar
  6. 6.
    T. Wood, D. Clark, and B. Ristic, “Efficient resampling and basic track continuity for the SMC-PHD filter”, in Proc. Cognitive systems with Interactive Sensors (CogIS), (Thales UK, Crawley), Nov. 2010.Google Scholar
  7. 7.
    Y. Petetin, D. Clark, B. Ristic, and D. Maltese, “A tracker based on a CPHD filter approach for infrared applications”, in Proc.SPIE, vol. 8050, 2011.Google Scholar
  8. 8.
    B. Ristic, B.-N. Vo, and D. Clark, “Performance evaluation of multi-target tracking using the OSPA metric”, in Proc. Int. Conf. Information Fusion, (Edinburgh, UK), July 2010.Google Scholar
  9. 9.
    J. L. Williams, “Experiments with graphical model implementations of multiple target multiple bernoulli filters”, in Proc. 7th Int. Conf. Intell. Sensors, Sensor Networks and Inform. Proc. (ISSNIP), (Adelaide, Australia), pp. 532–537, Dec. 2011.Google Scholar
  10. 10.
    B. E. Fridling and O. E. Drummond, “Performance evlauation methods for multiple target tracking algorithms”, in Proc. SPIE, Signal and Data Processing of Small Targets, vol. 1481, pp. 371–383, 1991.Google Scholar
  11. 11.
    B. Ristic, “A Tool for Track-While-Scan Algorithm Evaluation”, in Proc. Information, Decision, Control (IDC99), (Adelaide, Australia), pp. 105–110, Feb. 1999.Google Scholar
  12. 12.
    S. Blackman and R. Popoli, Design and Analysis of Modern Tracking Systems. Artech House, 1999.Google Scholar
  13. 13.
    S. B. Colegrove, L. M. Davis, and S. J. Davey, “Performance assessment of tracking systems”, in Proc. Intern. Symp. Signal Proc. and Applic. (ISSPA), (Gold Coast, Australia), pp. 188–191, Aug. 1996.Google Scholar
  14. 14.
    R. L. Rothrock and O. E. Drummond, “Performance metrics for multi-sensor, multi-target tracking”, in Proc. SPIE, Signal and Data Processing of Small Targets, vol. 4048, pp. 521–531, 2000.Google Scholar
  15. 15.
    B. Ristic, B. N. Vo, D. Clark and B. T. Vo, “A Metric for Performance Evaluation of Multi-Target Tracking Algorithms”,, IEEE Trans. Signal Processing, vol. 59, pp. 3452–3457, July 2011.Google Scholar
  16. 16.
    D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A consistent metric for performance evaluation of multi-object filters”, IEEE Trans. Signal Processing, vol. 56, pp. 3447–3457, Aug. 2008.Google Scholar
  17. 17.
    E. Kreyszig, Introductory functional analysis with applications. Wiley, 1989.Google Scholar
  18. 18.
    L. Svensson, D. Svensson, and P. Willett, “Set JPDA algorithm for tracking unordered sets of targets”, in Proc. 12th Int. Conf. Information Fusion, (Seattle, USA), ISIF, July 2009.Google Scholar
  19. 19.
    M. Guerriero, L. Svensson, D. Svensson, and P. Willett, “Shooting two birds with two bullets: how to find minimum mean OSPA estimates”, in Proc. 13th Int. Conf. Information Fusion, (Edinburgh, UK), ISIF, July 2010.Google Scholar
  20. 20.
    Á. F. Garcia-Fernández and B. Ristic, “Erratum to ‘A metric for performance evaluation of multi-target tracking algorithms”’,arXiv, Oct. 2012.Google Scholar
  21. 21.
    E. W. Weisstein, CRC Concise encyclopedia of mathematics. Chapman & Hall/CRC, 2nd ed., 2003.Google Scholar
  22. 22.
    D. Musicki and B. L. Scala, “Multi-target tracking in clutter without measurement assignment”, IEEE Trans. Aerospace and Electronic Systems, vol. 44, pp. 877–896, July 2008.Google Scholar
  23. 23.
    J. Yang and H. Ji, “A novel track maintenance algorithm for PHD/CPHD filter”, Signal Processing, vol. 92, pp. 2371–2380, 2012.Google Scholar
  24. 24.
    N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection”, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2005.Google Scholar
  25. 25.
    U. o. O. Active Vision Group, Dept. Engineering Science, “Town centre dataset”. http://www.robots.ox.ac.uk/ActiveVision/Research/Projects/ 2009bbenfold headpose/project.html#datasets, Accessed Dec. 2011Google Scholar
  26. 26.
    V. Prisacariu and I. Reid, “fastHOG - a real-time GPUimplementation of HOG”, tech. rep., University of Oxford, 2009.Google Scholar
  27. 27.
    R. Mahler, “The multisensor PHD filter I: General solution via multitarget calculus,” in, Proc. SPIE, vol. 7336, 2009. Google Scholar
  28. 28.
    B. Benfold and I. D. Reid, “Stable multi-target tracking in real-time surveillance video”, in Proc Computer Vision and Pattern Recognition (CVPR), 2011. Google Scholar
  29. 29.
    B.-T. Vo, B.-N. Vo, and A. Cantoni, “Analytic implementations of the cardinalized probability hypothesis density filter”, IEEE Trans. Signal Processing, vol. 55, no. 7, pp. 3553–3567, 2007.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.DSTOPort MelbourneAustralia

Personalised recommendations