Skip to main content

Applications Involving Non-standard Measurements

  • Chapter
  • First Online:
Book cover Particle Filters for Random Set Models

Abstract

This chapter presents some practical estimation problems involving imprecision, including source localization, monitoring and prediction of an epidemic, localization using spatially referring natural language statements, and classification using the imprecise likelihood models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Patwari, J. N. Ash, S. Kyperountas, R. L. M. A. O. Hero III, and N. S. Correal, “Locating the nodes”, IEEE Signal Processing Magazine, pp. 54–68, July 2005.

    Google Scholar 

  2. J. O. Berger, Statistical Decision Theory and Bayesian Analysis. New York: Springer Series in Statistics, 1985.

    Google Scholar 

  3. B. W. Silverman, Density estimation for statistical and data analysis. Chapman and Hall, 1986.

    Google Scholar 

  4. F. Brauer, P. V. D. Driessche, and J. Wu, eds., Mathematical Epidemiology. Lecture Notes in Mathematics, Springer, 2008.

    Google Scholar 

  5. R. M. Anderson and R. M. May, “Population biology of infectious diseases: Part 1”, Nature, vol. 280, pp. 361–367, 1979.

    Google Scholar 

  6. P. D. Stroud, S. J. Sydoriak, J. M. Riese, J. P. Smith, S. M. Mniszewski, and P. R. Romero, “Semi-empirical power-law scaling of new infection rate to model epidemic dynamics with inhomogeneous mixing”, Mathematical Bioscinese, vol. 203, pp. 301–318, 2006.

    Google Scholar 

  7. A. S. Novozhilov, “On the spread of epidemics in a closed heterogeneous population”, Mathematical Bioscienses, vol. 215, no. 2, p. 177185, 2008.

    Google Scholar 

  8. B. Ristic, A. Skvortsov, and M. Morelande, “Predicting the progress and the peak of an epidemic”, in Proc. IEEE Intern. Conf. Acoustic Speech and Signal Proc. (ICASSP), (Taipei, Taiwan), pp. 513–516, 2009.

    Google Scholar 

  9. A. Skvortsov and B. Ristic, “Monitoring and prediction of an epidemic outbreak using syndromic observations”, Mathematical biosciences, vol. 240, pp. 12–19, 2012.

    Google Scholar 

  10. M. Wagner, A. Moore, and R. Aryel, Handbook of Biosurveillance. Elsevier, 2006.

    Google Scholar 

  11. A. Wilson, G. Wilson, and D. Olwell, Statistical Methods in Counterterrorism: Game Theory, Modeling, Syndromic Surveillance, and Biometric Authentication. Springer, 2006.

    Google Scholar 

  12. C. Chew and G.Eysenbach, “Pandemics in the age of Twitter: content analysis of tweets during the 2009 h1n1 outbreak”, PLoS One, vol. 5, no. 11, p. e14118, 2010.

    Google Scholar 

  13. N. M. Schuster, M. Rogers, and L. Jr, “Using search engine query data to track pharmaceutical utilization: A study of statin”, The American Journal of Managed Care, vol. 16, no. 8, pp. e215–e219, 2010.

    Google Scholar 

  14. A. Signorini, A. M. Segre, and P. M. Polgreen, “The use of Twitter to track levels of disease activity and public concern in the u.s. during the influenza a h1n1 pandemic”, PLoS One, vol. 6, no. 5, p. e19467, 2011.

    Google Scholar 

  15. A. Culotta, “Detecting influenza outbreaks by analyzing Twitter messages”, in Proc. 2010 Conf. on Knowledge Discovery and Data Mining, (Washington, D.C.), 2010.

    Google Scholar 

  16. J. Ginsberg, M. Mohebbi, R. S. Patel1, L. Brammer, M. S. Smolinski, and L. Brilliant, “Detecting influenza epidemics using search engine query data”, Nature, vol. 457, pp. 1012–1015, 2009.

    Google Scholar 

  17. R.Connell, P.Dawson, and A.Skvortsov, “Comparison of an agent-based model of disease propagation with the generalised SIR epidemic model”, tech. rep., DSTO, 2009.

    Google Scholar 

  18. A. Bishop and B. Ristic, “Fusion of natural language propositions: Bayesian random set framework”, in Proc. 14th Int. Conf. Information Fusion, (Chicago, USA), July 2011.

    Google Scholar 

  19. A. N. Bishop and B. Ristic, “Information fusion with spatially referring natural language statements”, IEEE Trans. Aerospace and Electronic Systems, 2012. (in print).

    Google Scholar 

  20. W. Hayward and M. Tarr, “Spatial language and spatial representation”, Cognition, vol. 55, no. 1, pp. 39–84, 1995.

    Google Scholar 

  21. J. Bateman, J. Hois, R. Ross, and T. Tenbrink, “A linguistic ontology of space for natural language processing”, Artificial Intelligence, 2010.

    Google Scholar 

  22. B. Ristic and P. Smets, “Target classification approach based on the belief function theory”, IEEE Trans. Aerospace and Electronic Systems, vol. 41, pp. 574–583, April 2005.

    Google Scholar 

  23. P. Smets, “Data fusion in the transferable belief model”, in Proc. 3rd Intern. Conf. Information Fusion (FUSION 2000), (Paris, France), pp. PS21-33, 2000.

    Google Scholar 

  24. R. Yager and L. Liu, eds., Classic works of the DempsterShafer theory of belief functions. Studies in fuzziness and soft computing, Springer, 2008.

    Google Scholar 

  25. P. Smets, “Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem”, International Journal of Approximate Reasoning, vol. 9, pp. 1–35, 1993.

    Google Scholar 

  26. P. Smets, “Decision making in the TBM: The necessity of the pignistic transformation”, International Journal of Approximate Reasoning, vol. 38, pp. 133–147, 2005.

    Google Scholar 

  27. R. Mahler, Statistical Multisource Multitarget Information Fusion. Artech House, 2007.

    Google Scholar 

  28. G. Shafer, A mathematical theory of evidence. Princeton University Press, 1976.

    Google Scholar 

  29. F. Voorbraak, “A computationally efficient approximation of Demspter-Shafer theory”, Int. J. Man-Machine Studies, vol. 30, pp. 525–536, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branko Ristic .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ristic, B. (2013). Applications Involving Non-standard Measurements. In: Particle Filters for Random Set Models. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6316-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6316-0_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6315-3

  • Online ISBN: 978-1-4614-6316-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics