Advertisement

Hydrodynamic Fluctuations from the Boltzmann Equation

  • Matteo ColangeliEmail author
Chapter
  • 1.1k Downloads
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

Several solution techniques have been introduced in the literature to obtain approximate solutions of the Boltzmann equation. In particular, the CE method extends the hydrodynamics beyond the NSF approximation in such a way that the decay rate of the nextorder approximations (Burnett and super-Burnett) are polynomials of higher order in k.

Keywords

Boltzmann Equation Invariant Manifold Elongation Viscosity Invariance Equation Hydrodynamic Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.N. Gorban and I.V. Karlin, Invariant Manifolds for Physical and Chemical Kinetics, Lect. Notes Phys. 660 (Springer, Berlin, 2005).Google Scholar
  2. 2.
    M. Colangeli, I.V. Karlin and M. Kröger, From hyperbolic regularization to exact hydrodynamics for linearized Grad’s equations, Phys. Rev. E 75, 051204 (2007).Google Scholar
  3. 3.
    M. Colangeli, I.V. Karlin and M. Kröger, Hyperbolicity of exact hydrodynamics for three-dimensional linearized Grad’s equations, Phys. Rev. E 76, 022201 (2007).Google Scholar
  4. 4.
    A.V. Bobylev, Sov. Phys. Dokl. 27, 29 (1982).Google Scholar
  5. 5.
    H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows. Approximation Methods in Kinetic Theory, (Springer-Verlag Berlin Heidelberg 2005).Google Scholar
  6. 6.
    H. Struchtrup and M. Torrilhon, H-theorem, regularization, and boundary conditions for linearized 13 moment equations, Phys. Rev. Lett. 99, 014502 (2007).Google Scholar
  7. 7.
    A.V. Bobylev, Instabilities in the Chapman-Enskog expansion and hyperbolic Burnett equations, J. Stat. Phys. 124, 371 (2006).Google Scholar
  8. 8.
    M. Colangeli, M. Kröger and H. C.Öttinger, Boltzmann equation and hydrodynamic fluctuations, Phys. Rev. E 80, 051202 (2009).Google Scholar
  9. 9.
    P.L. Bhatnagar, E.P. Gross and M. Krook, A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems, Phys. Rev. 94, 511 (1954).Google Scholar
  10. 10.
    U. Marini Bettolo Marconi, A. Puglisi, L. Rondoni and A. Vulpiani, Fluctuation-Dissipation: Response Theory in Statistical Physics, Phys. Rep. 461, 111 (2008).Google Scholar
  11. 11.
    L. Onsager and S. Machlup, Fluctuations and irreversible processes, Phys. Rev. 91, 1505 (1953).Google Scholar
  12. 12.
    J. L. Lebowitz, E. Presutti and H. Spohn, Microscopic Models of Hydrodynamic Behavior, J. Stat. Phys. 51, 841 (1988).Google Scholar
  13. 13.
    I.V. Karlin, M. Colangeli and M. Kröger, Exact linear hydrodynamics from the Boltzmann Equation, Phys. Rev. Lett. 100, 214503 (2008).Google Scholar
  14. 14.
    P. Resibois, On linearized hydrodynamic modes in statistical physics, J. Stat. Phys. 2, 1 (1970).Google Scholar
  15. 15.
    J. M. Blatt, Model equations in the kinetic theory of gases, J. Phys. A: Math. Theor. 8, 980 (1975).Google Scholar
  16. 16.
    R. Balescu, Equilibrium and nonequilibrium statistical mechanics (Wiley, 1975).Google Scholar
  17. 17.
    L. E. Reichl, A modern course in statistical physics (University of Texas Press, Austin, 1980).Google Scholar
  18. 18.
    M. Kröger, Models for Polymeric and Anisotropic Liquids (Springer, Berlin, 2005).Google Scholar
  19. 19.
    S. Hess and W. Köhler, Formeln zur Tensor-Rechnung (Palm & Enke, Erlangen, 1980).Google Scholar
  20. 20.
    M. Abramowitz and I.A. Stegun, Handbook of mathematical functions (National Bureau of Standards, Washington, 1967).Google Scholar
  21. 21.
    J.P. Boon and S. Yip, Molecular Hydrodynamics (Dover, 1991).Google Scholar
  22. 22.
    C. Cercignani, Theory and Application of the Boltzmann Equation (Scottish Academic Press, Edinburgh, 1975).Google Scholar
  23. 23.
    S.S. Chikatamarla, S. Ansumali and I.V. Karlin, Entropic Lattice Boltzmann Models for Hydrodynamics in Three Dimensions, Phys. Rev. Lett. 97, 010201 (2006).Google Scholar
  24. 24.
    H. C.Öttinger and H. Struchtrup, The mathematical procedure of coarse graining: From Grad’s ten-moment equations to hydrodynamics, Multiscale Model. Simul. 6, 53 (2007).Google Scholar
  25. 25.
    C. S. Wang Chang and G.E. Uhlenbeck, The kinetic theory of gases (Amsterdam, North-Holland Pub. Co., 1970).Google Scholar
  26. 26.
    M. Kröger and M. Hütter, Unifying kinetic approach to phoretic forces and torques for moving and rotating convex particles, J. Chem. Phys. 125, 044105 (2006).Google Scholar
  27. 27.
    D. Burnett, The distribution of velocities and mean motion in a slight nonuniform gas, Proc. London Math. Soc. 39, 385 (1935).Google Scholar
  28. 28.
    A. N. Gorban and I. V. Karlin, Reconstruction lemma and fluctuation-dissipation theorem, Revista Mexicana de Fisica 48, Suppl. 1, 238 (2002).Google Scholar
  29. 29.
    L. Rondoni and E. G. D. Cohen, On some derivations of irreversible thermodynamics from dynamical systems theory, Physica D 341 168, (2002).Google Scholar
  30. 30.
    M. Colangeli and L. Rondoni, Equilibrium, fluctuation relations and transport for irreversible deterministic dynamics, Physica D 241 681 (2012).Google Scholar
  31. 31.
    D. Forster, Hydrodynamic fluctuations, Broken Symmetry, and Correlation Functions (W. A. Benjamin, New York, 1975).Google Scholar
  32. 32.
    E. Meyer and G. Sessler, Schallausbreitung in Gasen bei hohen Frequenzen and sehr niedrigen Drucken, Z. Phys. 149, 15 (1947).Google Scholar
  33. 33.
    I. M. de Schepper and E. G. D. Cohen, Very-short-wavelength collective modes in fluids, J. Stat. Phys. 27, 2 (1982).Google Scholar
  34. 34.
    J. D. Foch and G. W. Ford, in Studies in Statistical Mechanics (North-Holland, Amsterdam, 1970).Google Scholar
  35. 35.
    B.J. Alder and W.E. Alley, Generalized hydrodynamics, Phys. Today 37, 56 (1984).Google Scholar
  36. 36.
    B. J. Alder and W.E. Alley, Generalized transport coefficients for hard spheres, Phys. Rev. A 27, 3158 (1983).Google Scholar
  37. 37.
    T. R. Kirkpatrick, Short-wavelength collective modes and generalized hydrodynamic equations for hard-sphere particles, Phys. Rev. A 32, 3130 (1985).Google Scholar
  38. 38.
    H. Grad, On the kinetic theory of rarefied gases, Comm. Pure and Appl. Math. 2, 331 (1949).Google Scholar

Copyright information

© Matteo Colangeli 2013

Authors and Affiliations

  1. 1.Department of MathematicsPolitecnico di TorinoTorinoItaly

Personalised recommendations