Advertisement

Methods of Reduced Description

  • Matteo ColangeliEmail author
Chapter
  • 1.1k Downloads
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

In this chapter, we will review some analytical methods that make it possible to determine approximate solutions of the Boltzmann equation. In particular, we will discuss the structure of the Hilbert and Chapman–Enskog perturbation techniques and will also outline the essential features of the invariant manifold method, which stems from the assumption of time scale separation and, unlike the former methods, is also applicable beyond the strict hydrodynamic limit. Before reviewing the wealth of different techniques, it is worth investigating in greater depth the role of the different time scales in a particle system, which is one of the main ingredients underlying the onset of collective behavior.

Keywords

Boltzmann Equation Invariant Manifold Knudsen Number Hydrodynamic Limit Phase Space Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Cercignani, Theory and Application of the Boltzmann Equation (Scottish Academic Press, Edinburgh, 1975).Google Scholar
  2. 2.
    D. Jou, J. Casas-Vázquez and G. Lebon, Extended Irreversible Thermodynamics (Springer, Berlin, 2010).Google Scholar
  3. 3.
    H. C. Öttinger, Beyond Equilibrium Thermodynamics (Wiley, New York, 2005).Google Scholar
  4. 4.
    H. Grad, On the kinetic theory of rarefied gases, Comm. Pure and Appl. Math. 2, 331 (1949).Google Scholar
  5. 5.
    R. Liboff, Kinetic Theory Classical, Quantum and Relativistic Descriptions (Springer, New York, 2003).Google Scholar
  6. 6.
    N. N. Bogoliubov, in Studies in statistical mechanics, vol. 1, J. de Boer and G. E. Uhlenbeck (Wiley, New York, 1962).Google Scholar
  7. 7.
    R. Liboff, Generalized Bogoliubov hypothesis for dense fluids, Phys. Rev. A 31, 1883 (1985).Google Scholar
  8. 8.
    R. Balescu, Equilibrium and nonequilibrium statistical mechanics (Wiley, New York, 1975).Google Scholar
  9. 9.
    D. Forster, Hydrodynamic fluctuations, Broken Symmetry, and Corrrelation Functions (W. A. Benjamin, New York, 1975).Google Scholar
  10. 10.
    S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases, (Cambridge University Press, New York, 1970).Google Scholar
  11. 11.
    M. Lachowicz, From kinetic to Navier-Stokes-type equations, Appl. Math. Lett. 10, 19 (1997).Google Scholar
  12. 12.
    A.N. Gorban and I.V. Karlin, Invariant Manifolds for Physical and Chemical Kinetics, Lect. Notes Phys. 660 (Springer, Berlin, 2005).Google Scholar
  13. 13.
    M. Colangeli, I.V. Karlin and M. Kröger, From hyperbolic regularization to exact hydrodynamics for linearized Grad’s equations, Phys. Rev. E 75, 051204 (2007).Google Scholar
  14. 14.
    M. Colangeli, I.V. Karlin and M. Kröger, Hyperbolicity of exact hydrodynamics for three-dimensional linearized Grad’s equations, Phys. Rev. E 76, 022201 (2007).Google Scholar
  15. 15.
    A.V. Bobylev, Sov. Phys. Dokl. 27, 29 (1982).Google Scholar
  16. 16.
    R. Zwanzig, Memory Effects in Irreversible Thermodynamics, Phys. Rev. 124, 983 (1961).Google Scholar
  17. 17.
    D. N. Zubarev and V. P. Kalashnikov, Extremal properties of the nonequilibrium statistical operator, Theor. Math. Phys. 1, 108 (1969).Google Scholar
  18. 18.
    H. Grabert, Projection Operator Techniques in Nonequilibrium statistical Mechanics (Springer, Berlin, 1982).Google Scholar
  19. 19.
    H. Haken, Synergetics: an introduction: nonequilibrium phase transitions and self-organization in physics, chemistry and biology (Springer, Berlin, 1978).Google Scholar
  20. 20.
    C. W. Gardiner, Handbook of stochastic methods (Springer, Berlin, 2004).Google Scholar
  21. 21.
    I.V. Karlin, Exact summation of the Chapman-Enskog expansion from moment equations, J. Phys. A: Math. Gen. 33, 8037 (2000).Google Scholar
  22. 22.
    I.V. Karlin and A.N. Gorban, Hydrodynamics from Grad’s equations: What can we learn from exact solutions?, Ann. Phys. (Leipzig) 11, 783 (2002).Google Scholar

Copyright information

© Matteo Colangeli 2013

Authors and Affiliations

  1. 1.Department of MathematicsPolitecnico di TorinoTorinoItaly

Personalised recommendations