From the Phase Space to the Boltzmann Equation

  • Matteo ColangeliEmail author
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)


In this chapter, we will outline the general mathematical framework concerning the statistical description of a many-particle system in the phase space.


Boltzmann Equation Grad Limit Collision Operator Conditional Probability Density Phase Space Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Balescu, Equilibrium and nonequilibrium statistical mechanics (Wiley, 1975).Google Scholar
  2. 2.
    L. E. Reichl, A modern course in statistical physics (University of Texas Press, Austin, 1980).Google Scholar
  3. 3.
    C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases(Springer-Verlag, Berlin, 1994).Google Scholar
  4. 4.
    G. F. Mazenko, Nonequilibrium Statistical Mechanics (Wiley-VCH, 2006).Google Scholar
  5. 5.
    J.-P. Hansen and I.R. McDonald, Theory of Simple Liquids (Academic Press, 2006).Google Scholar
  6. 6.
    C. Cercignani, Theory and Application of the Boltzmann Equation (Scottish Academic Press, Edinburgh, 1975).Google Scholar
  7. 7.
    S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases, (Cambridge University Press, New York, 1970).Google Scholar
  8. 8.
    M. Bixon and R. Zwanzig, Boltzmann–Langevin Equation and Hydrodynamic fluctuations, Phys. Rev. 187, 1 (1969).Google Scholar
  9. 9.
    H. Ueyama, The stochastic Boltzmann equation and hydrodynamic fluctuations, J. Stat. Phys. 22, 1 (1980).Google Scholar
  10. 10.
    R. F. Fox and G. E. Uhlenbeck, Fluctuation Theory for the Boltzmann Equation, Phys. Fluids 13, 2881 (1970).Google Scholar
  11. 11.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, 1959).Google Scholar
  12. 12.
    H. C. Öttinger, Betond Equilibrium Thermodynamics (Wiley, 2005).Google Scholar
  13. 13.
    P.L. Bhatnagar, E.P. Gross and M. Krook, A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems, Phys. Rev. 94, 511 (1954).Google Scholar
  14. 14.
    I.V. Karlin, M. Colangeli and M. Kröger, Exact linear hydrodynamics from the Boltzmann Equation, Phys. Rev. Lett. 100, 214503 (2008).Google Scholar
  15. 15.
    A. Bellouquid, Global existence and large-times behavior for BGK model for a gas with nonconstant cross section, Transp. Theory Stat. Phys. 32, 157 (2003).Google Scholar

Copyright information

© Matteo Colangeli 2013

Authors and Affiliations

  1. 1.Department of MathematicsPolitecnico di TorinoTorinoItaly

Personalised recommendations