Advertisement

Good Cascade Impactor Practices

  • Jolyon P. Mitchell
Chapter

Abstract

The CI-based methods for measuring the APSD properties of OIP-­produced aerosols are complex, exacting, and laborious to undertake. Yet they are the only accepted methods by regulatory agencies worldwide for determining particle aerodynamic size-related properties. In 2003, a group within the Product Quality Research Institute (PQRI), a body set up by pharmaceutical industry, the FDA, and academia to explore complex scientific and regulatory problems, developed a guide to good cascade impactor practices (GCIP). This chapter contains a review of the essence of their work, augmented by developments that have taken place since the original article was published.

Keywords

Cascade Impaction Induction Port Backup Filter Product Quality Research Institute Inhaler Actuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Nichols S (2004) Particle size distribution parameters using the next generation pharmaceutical impactor. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ (eds) Respiratory drug delivery-IX. Davis HealthCare International Publishing, River Grove, IL, pp 485–487Google Scholar
  2. 2.
    Bonam M, Christopher D, Cipolla D, Donovan B, Goodwin D, Holmes S, Lyapustina S, Mitchell J, Nichols S, Petterson G, Quale C, Rao N, Singh D, Tougas T, Van Oort M, Walther B, Wyka B (2008) Minimizing variability of cascade impaction measurements in inhalers and nebulizers. AAPS PharmSciTech 9(2):404–413PubMedCrossRefGoogle Scholar
  3. 3.
    Christopher D, Curry P, Doub B, Furnkranz K, Lavery M, Lin K, Lyapustina S, Mitchell J, Rogers B, Strickland H, Tougas T, Tsong Y, Wyka B (2003) Considerations for the development and practice of cascade impaction testing including a mass balance failure investigation tree. J Aerosol Med 16:235–247PubMedCrossRefGoogle Scholar
  4. 4.
    US Food and Drug Administration (FDA) (1998) CDER. Draft guidance for industry metered dose inhaler (MDI) and dry powder inhaler (DPI) drug products chemistry, manufacturing, and controls documentation, Rockville, MD. Accessed 6 Jan 2012 at http://www.fda.gov/cder/guidance/2180dft.pdf
  5. 5.
    Marple VA, Roberts DL, Romay FJ, Miller NC, Truman KG, Van Oort M, Olsson B, Holroyd MJ, Mitchell JP, Hochrainer D (2003) Next generation pharmaceutical impactor. Part 1: design. J Aerosol Med 16(3):283–299PubMedCrossRefGoogle Scholar
  6. 6.
    Purewal TS (2001) Test methods for inhalers to check performance under normal use and unintentional use conditions. In: Drug delivery to the lungs-12. The Aerosol Society, London, pp 92–98Google Scholar
  7. 7.
    Stewart E, Holt J, Fitzgerald C, Bell P, Popow J (2006) Impact of using an automated shake-­fire system on the shot weight and dose content uniformity of an HFA metered dose inhaler. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ (eds) Respiratory drug delivery-2006. Davis Healthcare International Publishing, River Grove, IL, pp 581–583Google Scholar
  8. 8.
    Miller NC, Roberts DL, Marple VA (2002) The ‘Service Head’ approach to automating the next generation pharmaceutical impactor: proof of concept. In: Dalby RN, Byron PR, Peart J, Farr SJ (eds) Respiratory drug delivery VIII. Davis Horwood International, Raleigh, NC, pp 521–523Google Scholar
  9. 9.
    Holzner PM, Muller BW (1995) Particle size determination of metered dose inhalers with inertial separation methods: apparatus A and B (BP), four stage impinger and Andersen Mark II cascade impactor. Int J Pharm 116(1):11–18CrossRefGoogle Scholar
  10. 10.
    Mitchell JP, Nagel MW, Wiersema KJ, Doyle CC (2003) Aerodynamic particle size analysis of aerosols from pressurized metered dose inhalers: comparison of Andersen 8-stage cascade impactor, next generation pharmaceutical impactor, and model 3321 Aerodynamic Particle Sizer aerosol spectrometer. AAPS PharmSciTech 4(4):article 54. Accessed 10 Jan 2012 at: http://www.aapspharmscitech.org/view.asp?art=pt040454%26;pdf=yes
  11. 11.
    Taki M, Zeng XM, Marriott C, Martin G (2006) Comparison of deposition profiles of drugs from a combination dry powder inhaler using the Andersen cascade impactor (ACI), multistage liquid impinger (MSLI) and next generation impactor (NGI). In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ (eds) Respiratory drug delivery-2006. Davis Healthcare International Publishing, River Grove, IL, pp 659–662Google Scholar
  12. 12.
    Jozwiakowski J, Lor X, Paulson S, Schultz D (2006) Comparison of Andersen cascade ­impactor and next generation impactor performance of beclomethasone pMDIs with ol­igolactic acid. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ (eds) Respiratory drug d­elivery-2006. Davis Healthcare International Publishing, River Grove, IL, pp 357–359Google Scholar
  13. 13.
    Mitchell JP, Nagel MW (2004) Particle size analysis of aerosols from medicinal inhalers. KONA Powder Part 22:32–65Google Scholar
  14. 14.
    Roberts DL, Mitchell JP (2011) Influence of stage efficiency curves on full-resolution impactor data interpretation. Drug delivery to the lungs-22. The Aerosol Society, Edinburgh, pp 181–184. Available at: http://ddl-conference.org.uk/index.php?q=previous_conferences. Visited 4 Aug 2012
  15. 15.
    Finlay WH, Stapleton KW (1999) Undersizing of droplets from a vented nebulizer caused by aerosol heating during transit through an Andersen impactor. J Aerosol Sci 30(1):105–109CrossRefGoogle Scholar
  16. 16.
    Mitchell JP (2000) Particle standards: their development and application. KONA Powder Part 18:41–59Google Scholar
  17. 17.
    Marple VA, Olson BA, Santhanakrishnan K, Mitchell JP, Murray SC, Hudson-Curtis BL (2003) Next generation pharmaceutical impactor (a new impactor for pharmaceutical inhaler testing)—Part 2: archival calibration. J Aerosol Med 16(3):301–324PubMedCrossRefGoogle Scholar
  18. 18.
    Chambers F, Ali A, Mitchell J, Shelton C, Nichols S (2010) Cascade impactor (CI) mensuration—an assessment of the accuracy and precision of commercially available optical measurement systems. AAPS PharmSciTech 11(1):472–484PubMedCrossRefGoogle Scholar
  19. 19.
    Roberts DL, Romay FJ (2005) Relationship of stage mensuration data to the performance of new and used cascade impactors. J Aerosol Med 18(4):396–413PubMedCrossRefGoogle Scholar
  20. 20.
    European Directorate for the Quality of Medicines and Healthcare (EDQM). Preparations for inhalation: aerodynamic assessment of fine particles. (2012) Section 2.9.18—European Pharmacopeia [—Apparatus B in versions up to 4th edn. 2002] Council of Europe, 67075, Strasbourg, FranceGoogle Scholar
  21. 21.
    United States Pharmacopeial Convention (USP) (2012) Chapter 601: Aerosols, metered-dose inhalers, and dry powder inhalers. USP35-NF30, Rockville, MDGoogle Scholar
  22. 22.
    Roberts DL (2009) Theory of multi-nozzle impactor stages and the interpretation of stage mensuration data. Aerosol Sci Technol 43(11):1119–1129CrossRefGoogle Scholar
  23. 23.
    Svensson M, Pettersson G, Asking L (2005) Mensuration and cleaning of the jets in Andersen cascade impactors. Pharm Res 22(1):161–165PubMedCrossRefGoogle Scholar
  24. 24.
    Milhomme K, Dunbar C, Lavarreda D, Roberts D, Romay F (2006) Measuring changes in the effective jet diameter of cascade impactor stages with the flow resistance monitor. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ (eds) Respiratory drug delivery-2006. Davis Healthcare International Publishing, River Grove, IL, pp 405–407Google Scholar
  25. 25.
    Stein SW, Olson BA (1997) Variability in size distribution measurements obtained using multiple Andersen mark II cascade impactors. Pharm Res 14(12):1718–1725PubMedCrossRefGoogle Scholar
  26. 26.
    Stein SW (1999) Size distribution measurements of metered dose inhalers using Andersen mark II cascade impactors. Int J Pharm 186(1):43–52PubMedCrossRefGoogle Scholar
  27. 27.
    Kadrichu N, Rao N, Sluggett G, Fong B, Jones G, Perrone T, Seshadri S, Shao P, Williams G, Zhang J, Bennett D (2004) Sensitivity of Andersen cascade impactor response to stage nozzle dimensions. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ (eds) Respiratory drug delivery-IX. Davis Healthcare International Publishing, River Grove, IL, pp 561–564Google Scholar
  28. 28.
    Marple VA, Rubow KL, Olson BA (2001) Inertial, gravitational, centrifugal, and thermal collection techniques. In: Baron PA, Willeke K (eds) Aerosol measurement: principles, techniques and applications, 2nd edn. Wiley, New York, NY, pp 229–260Google Scholar
  29. 29.
    Asking L, Mitchell J, Nichols S (2008) Air flow meters used at testing of inhalation products—an inter-laboratory comparison, Drug delivery to the lungs-19. The Aerosol Society, Edinburgh, UK, pp 42–44, Available at: http://ddl-conference.org.uk/index.php?q=previous_conferences. Visited 4 Aug 2012Google Scholar
  30. 30.
    Olsson B, Asking L (2002) Methods of setting and measuring flowrates in pharmaceutical impactor experiments, 13th edn, Drug delivery to the lungs-13. The Aerosol Society, London, pp 205–208Google Scholar
  31. 31.
    Wiktorsson B, Asking L (2002) Comparison between flowmeters used to set flows in pharmaceutical inhaler testing, 13th edn, Drug delivery to the lungs-13. The Aerosol Society, London, pp 168–171Google Scholar
  32. 32.
    Van Oort M, Downey B, Roberts W (1996) Verification of operating the Andersen cascade impactor at different flowrates. Pharm Forum 22(2):2211–2215Google Scholar
  33. 33.
    Mitchell JP, Nagel MW (2003) Cascade impactors for the size characterization of aerosols from medical inhalers: their uses and limitations. J Aerosol Med 16(4):341–377PubMedCrossRefGoogle Scholar
  34. 34.
    Copley M, Smurthwaite M, Roberts DL, Mitchell JP (2005) Revised internal volumes of cascade impactors for those provided by Mitchell and Nagel. J Aerosol Med 18(3):364–366PubMedCrossRefGoogle Scholar
  35. 35.
    Stein S, Myrdal PB (2006) The relative influence of atomization and evaporation on metered dose inhaler drug delivery efficiency. Aerosol Sci Technol 40(5):335–347CrossRefGoogle Scholar
  36. 36.
    Peng C, Chow A, Chan CK (2000) Study of the hygroscopic properties of selected pharmaceutical aerosols using single particle levitation. Pharm Res 17(9):1104–1109PubMedCrossRefGoogle Scholar
  37. 37.
    Finlay WH (1998) Estimating the type of hygroscopic behavior exhibited by aqueous droplets. J Aerosol Med 11(4):221–229PubMedCrossRefGoogle Scholar
  38. 38.
    Byron PR, Davis SS, Bubb MD, Cooper P (1977) Pharmaceutical implications of particle growth at high relative humidities. Pesticide Sci 8(5):521–526CrossRefGoogle Scholar
  39. 39.
    Martin AR, Finlay WH (2004) Effect of humidity on size distributions of MDI particles exiting a mechanical ventilation holding chamber. In: Proceedings of international conference on MEMS, NANO and Smart Systems, 2004. ICMENS, Banff, Alberta, Canada, pp 280–283. Available at: http://www.computer.org/portal/web/csdl/doi/10.1109/ICMENS.2004.57. Visited 10 Jan 2012
  40. 40.
    Byron PR, Peart J, Staniforth JN (1997) Aerosol electrostatics I: properties of fine powders before and after aerosolization by dry powder inhalers. Pharm Res 14(6):698–705PubMedCrossRefGoogle Scholar
  41. 41.
    Murtomaa M, Mellin V, Harjunen P, Lankinen T, Laine E, Lehto VP (2004) Effect of particle morphology on the triboelectrification in dry powder inhalers. Int J Pharm 282(1–2):107–114PubMedCrossRefGoogle Scholar
  42. 42.
    Carter PA, Cassidy OE, Rowley G, Merrifield DR (1997) Triboelectrification of fractionated crystalline and spray dried lactose. Pharm Pharmacol Commun 4:111–115Google Scholar
  43. 43.
    Carter PA, Rowley G, McEntee NJ (1997) An investigation of experimental variables during triboelectrification studies on powders. J Pharm Pharmacol 49(S4):23Google Scholar
  44. 44.
    Murtomaa M, Strengella S, Lainea E, Bailey A (2003) Measurement of electrostatic charge of an aerosol using a grid-probe. J Electrostat 58(3–4):197–207CrossRefGoogle Scholar
  45. 45.
    Ramirez-Dorronsoro J-C, Jacko RB, Kildsig DO (2006) Chargeability measurements of selected pharmaceutical dry powders to assess their electrostatic charge control capabilities. AAPS PharmSciTechnol 7(4):article 103 (2006), Available at: http://www.aapspharmscitech.org/view.asp?art=pt0704103. Accessed 10 Jan 2012
  46. 46.
    Kwok PCL, Glover W, Chan HK (2005) Electrostatic charge characteristics of aerosols produced from metered dose inhalers. J Pharm Sci 94(12):2789–2799PubMedCrossRefGoogle Scholar
  47. 47.
    Glover W, Kwok P, Chan HK (2004) Electrostatic charges in metered dose inhalers. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ (eds) Respiratory drug delivery-IX. Davis Healthcare International Publishing, River Grove, IL, pp 829–832Google Scholar
  48. 48.
    Glover W, Chan HK (2004) Electrostatic charge characterization of pharmaceutical aerosols using electrical low-pressure impaction (ELPI). J Aerosol Sci 35(6):755–764CrossRefGoogle Scholar
  49. 49.
    Crampton M, Kinnersley R, Ayres J (2004) Sub-micrometer particle production by pressurized metered dose inhalers. J Aerosol Med 17(1):33–42PubMedCrossRefGoogle Scholar
  50. 50.
    Glover W, Chan HK (2004) Electrostatic charge characterization of pharmaceutical aerosols. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ (eds) Respiratory drug delivery-IX. Davis Healthcare International Publishing, River Grove, IL, pp 825–826Google Scholar
  51. 51.
    Kwok P, Chan HK (2004) Measurement of electrostatic charge of nebulised aqueous droplets with the electrical low pressure impactor. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ (eds) Respiratory drug delivery-IX. Davis Healthcare International Publishing, River Grove, IL, pp 833–836Google Scholar
  52. 52.
    Peart P, Magyar C, Byron PR (1998) Aerosol electrostatics—metered dose inhalers (MDIs): reformulation and device design issues. In: Dalby RN, Byron PR, Farr SJ (eds) Respiratory drug delivery-VI. Interpharm Press, Buffalo Grove, IL, pp 227–233Google Scholar
  53. 53.
    Horton KD, Ball MHE, Mitchell JP (1992) The calibration of a California measurements PC-2 quartz crystal cascade impactor. J Aerosol Sci 23(5):505–524CrossRefGoogle Scholar
  54. 54.
    Nasr MM, Ross DL, Miller N (1997) Effect of drug loading and plate coating on the particle size distribution of a commercial albuterol metered dose inhaler (MDI) determined using the Andersen and Marple–Miller cascade impactor. Pharm Res 14(10):1437–1443PubMedCrossRefGoogle Scholar
  55. 55.
    Mitchell J (2003) Practices of coating collection surfaces of cascade impactors: a survey of members of EPAG, 14th edn, Drug delivery to the lungs-14. The Aerosol Society, London, pp 75–78Google Scholar
  56. 56.
    Byron PR (1994) Compendial dry powder testing: USP perspectives. In: Byron PR, Dalby RN, Farr SJ (eds) Respiratory drug delivery-IV. Interpharm Press, Buffalo Grove, IL, pp 153–162Google Scholar
  57. 57.
    Dunbar CA, Hickey AJ, Holzner P (1998) Dispersion and characterization of pharmaceutical dry powder aerosols. KONA Powder Part 16:7–45Google Scholar
  58. 58.
    Kamiya A, Sakagami M, Hindle M, Byron PR (2004) Locating particle bounce in the next generation impactor (NGI). In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ (eds) Respiratory drug delivery-IX. Davis Healthcare International Publishing, River Grove, IL, pp 869–871Google Scholar
  59. 59.
    Berg E, Svensson JO, Asking L (2007) Determination of nebulizer droplet size distribution: a method based on impactor refrigeration. J Aerosol Med 20(2):97–104PubMedCrossRefGoogle Scholar
  60. 60.
    Kamiya A, Sakagami M, Hindle M, Byron PR (2004) Aerodynamic sizing of metered dose inhalers: an evaluation of the Andersen and next generation pharmaceutical impactors and their USP methods. J Pharm Sci 93(7):1828–1837PubMedCrossRefGoogle Scholar
  61. 61.
    Nasr MM, Allgire JF (1995) Loading effect on particle size measurements by inertial sampling of albuterol metered dose inhalers. Pharm Res 12(11):1677–1681PubMedCrossRefGoogle Scholar
  62. 62.
    Feddah MR, Davies NM (2003) Influence of single versus multiple actuations on the particle size distribution of beclomethasone dipropionate metered-dose inhalers. J Pharm Pharmacol 55(8):1055–1061PubMedCrossRefGoogle Scholar
  63. 63.
    Merrin C, Lee S, Needham M, Chambers F (2003) Evaluation of NGI performance with high dose pMDIs, 14th edn, Drug delivery to the lungs-14. The Aerosol Society, London, pp 184–187Google Scholar
  64. 64.
    Copley M (2007) Understanding cascade impaction and its importance for inhaler testing. Copley Scientific Ltd Technical Briefing, Available at: http://www.copleyscientific.co.uk/documents/ww/Understanding%20Cascade%20Impaction%20White%20Paper.pdf. Visited 10 Jan 2012
  65. 65.
    MSP Corporation (2007) NGI User’s Guide. NGI-0170-6001, Revision C. Available at: http://www.epag.co.uk/Download2.asp?DID=902. Visited 10 Jan 2012
  66. 66.
    Mitchell JP (2006) Cleaning: a survey of members of the European Pharmaceutical Aerosol Group (EPAG), 17th edn, Drug delivery to the lungs-XVII. The Aerosol Society, Edinburgh, pp 197–199Google Scholar
  67. 67.
    Mitchell JP, Costa PA, Waters S (1987) An assessment of an Andersen Mark-II cascade impactor. J Aerosol Sci 19(2):213–221CrossRefGoogle Scholar
  68. 68.
    European Directorate for Quality of Medicines and Healthcare (EDQM) (2012) Preparations for nebulisation. Section 2.9.44—European Pharmacopeia, Council of Europe, 67075 Strasbourg, FranceGoogle Scholar
  69. 69.
    Dolovich M, Rhem R (1998) Impact of oropharyngeal deposition on inhaled dose. J Aerosol Med S1:S112–S121Google Scholar
  70. 70.
    Harris D, Chaudhry S, Chaudry I, Li S, Sequeira J, Wyka B (1996) Influence of entry-port design on drug deposition in cascade-impactor from metered-dose inhalers. AAPS Annual Meeting. AAPS Poster Session, 1996Google Scholar
  71. 71.
    Van Oort M, Downey B (1996) Cascade impaction of MDIs and DPIs: proposal of induction port, inlet cone, and pre-separator lid designs for inclusion in general chapter <601> Pharm Forum 22(2):2204–2210Google Scholar
  72. 72.
    US Pharmacopeial Convention (2010) Chapter 1601: Products for nebulization—characterization tests. In Process Revision, Pharm Forum 36(2):534–538Google Scholar
  73. 73.
    Keil JC, Reshima K, Peart J (2006) Using and interpreting aerosol electrostatic data from the electrical low pressure impactor. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ (eds) Respiratory drug delivery-2006. Davis Healthcare International Publishing, River Grove, IL, pp 267–277Google Scholar
  74. 74.
    Peart J, Orban JC, McGlynn P, Redmon M, Sargeant CM, Byron PR (2002) MDI electrostatics: valve and formulation interactions which really make a difference. In: Dalby RN, Byron PR, Peart J, Farr SJ (eds) Respiratory drug delivery-VIII. Davis Healthcare International Publishing, River Grove, IL, pp 223–230Google Scholar
  75. 75.
    Bagger-Jörgensen H, Sandell D, Lundbäck H, Sundahl M (2005) Effect of inherent variability of inhalation products on impactor mass balance limits. J Aerosol Med 18(4):367–378PubMedCrossRefGoogle Scholar
  76. 76.
    Product Quality Research Institute (2012) Information about PQRI as well as reports of WG meetings can be found at: http://www.pqri.org/. Visited 10 Jan 2012
  77. 77.
    Mitchell JP, Bauer R, Lyapustina S, Tougas T, Glaab V (2011) Non-impactor-based methods for sizing of aerosols emitted from orally inhaled and nasal drug products (OINDPs). AAPS PharmSciTech 12(3):965–988PubMedCrossRefGoogle Scholar
  78. 78.
    Mitchell JP, Dunbar C (2005) Analysis of cascade impactor mass distributions. J Aerosol Med 18(4):439–451PubMedCrossRefGoogle Scholar
  79. 79.
    Christopher JD, Dey M, Lyapustina S, Mitchell JP, Tougas TP, Van Oort M, Strickland H, Wyka B (2010) Generalized simplified approaches for mass median aerodynamic determination. Pharm Forum 36(3):812–823Google Scholar
  80. 80.
    Mitchell JP, Nagel MW (2000) Spacer and holding chamber testing in vitro: a critical analysis with examples. In: Dalby RN, Byron PR, Farr SJ, Peart J (eds) Respiratory drug delivery-VII. Serentec Press, Raleigh, NC, pp 265–274Google Scholar
  81. 81.
    Lefebvre AH (1989) Atomization and sprays. Taylor and Francis, Hemisphere Publishing Corporation, New York, NYGoogle Scholar
  82. 82.
    Lewis DA (2008) New cascade impactor software. Inhalation 2(4):7–10Google Scholar
  83. 83.
    Hinds WC (1998) Properties, behavior, and measurement of airborne particles, 2nd edn. Wiley-Interscience, New York, NY, pp 75–110Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Trudell Medical InternationalLondonCanada

Personalised recommendations