Skip to main content

In-Vivo NIRS and Muscle Oxidative Metabolism

  • Chapter
  • First Online:
Book cover Application of Near Infrared Spectroscopy in Biomedicine

Part of the book series: Handbook of Modern Biophysics ((HBBT,volume 4))

  • 1958 Accesses

Abstract

Muscle oxidative metabolism has often been examined by traditional analytical biochemistry based on obtaining biopsy samples and invasive intravascular catheterization on muscle at rest and during exercise. Myoglobin O2 saturation and reduced nicotinamide adenine dinucleotide (NADH) redox state also can be detected using freeze-clamped tissue. NIRS has been utilized as a noninvasive approach to evaluate skeletal muscle O2 dynamics and energetics during exercise. Applying the NIRS technology requires attention to the validity and calibration of the measurements as well as to the underlying basis for biochemical, physiological, pathophysiological interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Welch HG, Bonde-Petersen F, Graham T, Klausen K, Secher N (1977) Effects of hyperoxia on leg blood flow and metabolism during exercise. J Appl Physiol 42:385–390

    PubMed  CAS  Google Scholar 

  2. Gayeski TE, Honig CR (1983) Direct measurement of intracellular O2 gradients; role of convection and myoglobin. Adv Exp Med Biol 159:613–621

    Article  PubMed  CAS  Google Scholar 

  3. Bhambhani YN (2004) Muscle oxygenation trends during dynamic exercise measured by near infrared spectroscopy. Can J Appl Physiol 29:504–523

    Article  PubMed  Google Scholar 

  4. Boushel B, Langberg H, Olesen J, Gonzales-Alonzo J, Bulow J, Kjaer M (2001) Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports 11:213–222

    Article  PubMed  CAS  Google Scholar 

  5. Ferrari M, Mottola L, Quaresima V (2004) Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol 29:463–487

    Article  PubMed  Google Scholar 

  6. Hamaoka T, McCully K, Quaresima V, Yamamoto K, Chance B (2007) Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans. J Biomed Opt 12(6):62105–62120

    Article  Google Scholar 

  7. Millikan GA (1933) A simple photoelectric colorimeter. J Physiol 79:152–157

    PubMed  CAS  Google Scholar 

  8. Chance B (1954) Spectrophotometry of intracellular respiratory pigments. Science 120:767–775

    Article  PubMed  CAS  Google Scholar 

  9. Chance B, Connelly CM (1957) A method for the estimation of the increase in concentration of adenosine diphosphate in muscle sarcosomes following a contraction. Nature 179:1235–1237

    Article  PubMed  CAS  Google Scholar 

  10. Jöbsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267

    Article  PubMed  Google Scholar 

  11. McCully KK, Kakihira H, Vandenborne K, Kent-Braun J (1991) Noninvasive measurements of activity-induced changes in muscle metabolism. J Biomech 24:153–161

    Article  PubMed  Google Scholar 

  12. Chance B, Dait MT, Zhang C, Hamaoka T, Hagerman F (1992) Recovery from exercise-induced desaturation in the quadriceps muscles of elite competitive rowers. Am J Physiol 262:C766–C775

    PubMed  CAS  Google Scholar 

  13. Hampson NB, Piantadosi CA (1988) Near infrared monitoring of human skeletal muscle oxygenation during forearm ischemia. J Appl Physiol 64(6):2449–2457

    PubMed  CAS  Google Scholar 

  14. Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation, I: kinetics of oxygen utilization. J Biol Chem 217:409–427

    PubMed  CAS  Google Scholar 

  15. Chance B, Leigh JS, Kent-Braun JA, McCully K, Nioka S, Clark BJ, Maris JM, Graham T (1986) Multiple controls of oxidative metabolism in living tissues as studied by phosphorus magnetic resonance. Proc Natl Acad Sci USA 83:9458–9462

    Article  PubMed  CAS  Google Scholar 

  16. Klingenberg M (1980) The ADP–ATP translocation in mitochondria, a membrane potential controlled transport. J Membr Biol 56(2):97–105

    Article  PubMed  CAS  Google Scholar 

  17. Holian A, Owen CS, Wilson DF (1977) Control of respiration in isolated mitochondria: quantitative evaluation of the dependence of respiratory rates on [ATP], [ADP], and [Pi]. Arch Biochem Biophys 181:164–171

    Article  PubMed  CAS  Google Scholar 

  18. Meyer RA (1988) A linear model of muscle respiration explains monoexponential phosphocreatine changes. Am J Physiol 254:C548–C553

    PubMed  CAS  Google Scholar 

  19. Hamaoka T, Iwane H, Shimomitsu T, Katsumura T, Murase N, Nishio S, Osada T, Kurosawa Y, Chance B (1996) Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy. J Appl Physiol 81:1410–1417

    PubMed  CAS  Google Scholar 

  20. Chance B, Nioka S, Kent-Braun J, McCully K, Fountain M, Greenfeld R, Holtom G (1988) Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle. Anal Biochem 174:698–707

    Article  PubMed  CAS  Google Scholar 

  21. Ferrari M, Wei Q, Carraresi L, De Blasi RA, Zaccanti G (1992) Time-resolved spectroscopy of the human forearm. J Photochem Photobiol B 16:141–153

    Article  PubMed  CAS  Google Scholar 

  22. Hamaoka T, Katsumura T, Murase N, Nishio S, Osada T, Sako T, Higuchi H, Kurosawa Y, Shimomitsu T, Miwa M, Chance B (2000) Quantification of ischemic muscle deoxygenation by near infrared time-resolved spectroscopy. J Biomed Opt 5:102–105

    Article  PubMed  CAS  Google Scholar 

  23. Delpy DT, Cope M, van der Zee P, Arridge S, Wray S, Wyatt J (1988) Estimation of optical pathlength through tissue from direct time of flight measurement. Phys Med Biol 33:1433–1442

    Article  PubMed  CAS  Google Scholar 

  24. Wolf M, Wolf U, Choi JH, Gupta R, Safonova LP, Paunescu LA, Michalos A, Gratton E (2002) Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex. Neuroimage 17:1868–1875

    Article  PubMed  Google Scholar 

  25. Duncan A, Meek JH, Clemence M, Elwell CE, Tyszczuk L, Cope M, Delpy DT (1995) Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy. Phys Med Biol 40:295–304

    Article  PubMed  CAS  Google Scholar 

  26. Delpy DT, Cope M (1997) Quantification in tissue near-infrared spectroscopy. Philos Trans Roy Soc Lond B 352:649–659

    Article  CAS  Google Scholar 

  27. Quaresima V, Homma S, Azuma K, Shimizu S, Chiarotti F, Ferrari M, Kagaya A (2001) Calf and shin muscle oxygenation patterns and femoral artery blood flow during dynamic plantar flexion exercise in humans. Eur J Appl Physiol Occup Physiol 84:387–394

    Article  CAS  Google Scholar 

  28. Hamaoka T, Osada T, Murase N, Sako T, Higuchi H, Kurosawa Y, Miwa M, Katsumura T, Chance B (2003) Quantitative evaluation of oxygenation and metabolism in the human skeletal muscle. Opt Rev 10(5):493–497

    Article  CAS  Google Scholar 

  29. Ferreira LF, Hueber DM, Barstow TJ (2007) Effects of assuming constant optical scattering on measurements of muscle oxygenation by near-infrared spectroscopy during exercise. J Appl Physiol 102:358–367

    Article  PubMed  CAS  Google Scholar 

  30. Marcinek DJ, Amara CE, Matz K, Conley KE, Schenkman KA (2007) Wavelength shift analysis: a simple method to determine the contribution of hemoglobin and myoglobin to in vivo optical spectra. Appl Spectrosc 61(6):665–669

    Article  PubMed  CAS  Google Scholar 

  31. Wang ZY, Noyszewski EA, Leigh JS Jr (1990) In vivo MRS measurement of deoxymyoglobin in human forearms. Magn Reson Med 14:562–567

    Article  PubMed  CAS  Google Scholar 

  32. Mole PA, Chung Y, Tran TK, Sailasuta N, Hurd R, Jue T (1999) Myoglobin desaturation with exercise intensity in human gastrocnemius muscle. Am J Physiol 277:R173–R180

    PubMed  CAS  Google Scholar 

  33. Nioka S, Wang DJ, Im J, Hamaoka T, Wang ZJ, Leigh JS, Chance B (2006) Simulation of Mb/Hb in NIRS and oxygen gradient in the human and canine skeletal muscles using H-NMR and NIRS. Adv Exp Med Biol 578:223–228

    Article  PubMed  CAS  Google Scholar 

  34. Lanza IR, Tevald MA, Befroy DE, Kent-Braun JA (2010) Intracellular energetics and critical PO2 in resting ischemic human skeletal muscle in vivo. Am J Physiol Regul Integr Comp Physiol 299:R1415–R1422

    Article  PubMed  CAS  Google Scholar 

  35. Richardson RS, Newcomer SC, Noyszewski EA (2001) Skeletal muscle intracellular PO2 assessed by myoglobin desaturation: response to graded exercise. J Appl Physiol 91:2679–2685

    PubMed  CAS  Google Scholar 

  36. Tran TK, Sailasuta N, Kreutzer U, Hurd R, Chung Y, Mole P, Kuno S, Jue T (1999) Comparative analysis of NMR and NIRS measurements of intracellular PO2 in human skeletal muscle. Am J Physiol 276:R1682–R1690

    PubMed  CAS  Google Scholar 

  37. Chance B, Nioka S, Kent J, McCully K, Fountain M, Greenfeld R, Holtom G (1988) Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle. Anal Biochem 174:698–707

    Article  PubMed  CAS  Google Scholar 

  38. Tew GA, Ruddock AD, Saxton JM (2010) Skin blood flow differentially affects near-infrared spectroscopy-derived measures of muscle oxygen saturation and blood volume at rest and during dynamic leg exercise. Eur J Appl Physiol 110(5):1083–1089

    Article  PubMed  Google Scholar 

  39. Ferrari M, Cettolo V, Quaresima V (2006) Light source-detector spacing of near-infrared-based tissue oximeters and the influence of skin blood flow. J Appl Physiol 100(4):1426–1427

    Article  PubMed  Google Scholar 

  40. McCully KK, Hamaoka T (1998) Near-infrared spectroscopy: what can it tell us about oxygen saturation in skeletal muscle? Exerc Sport Sci Rev 28:123–127

    Google Scholar 

  41. Yamamoto K, Niwayama M, Lin L, Shiga T, Kudo N, Takahashi M (1998) Accurate NIRS measurement of muscle oxygenation by correcting the influence of a subcutaneous fat layer. Proc SPIE 3194:166–173

    Article  Google Scholar 

  42. Van Beekvelt MC, Borghuis MS, Van Engelen BG, Wevers RA, Colier WN (2001) Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle. Clin Sci (Lond) 101:21–28

    Article  Google Scholar 

  43. Niwayama M, Yamamoto K, Kohata D, Hirai K, Kudo N, Hamaoka T, Kime R, Katsumura T (2002) A 200-channel imaging system of muscle oxygenation using CW near-infrared spectroscopy. IEICE Trans Inf Syst E85-D(1):115–123

    Google Scholar 

  44. Yang Y, Soyemi OO, Landry MR, Soller BR (2005) Influence of a fat layer on the near infrared spectra of human muscle: quantitative analysis based on two-layered Monte Carlo simulations and phantom experiments. Opt Express 13:1570–1579

    Article  PubMed  Google Scholar 

  45. Wilson JR, Mancini DM, McCully K, Ferraro N, Lanoce V, Chance B (1989) Noninvasive detection of skeletal muscle underperfusion with near-infrared spectroscopy in patients with heart failure. Circulation 80:1668–1674

    Article  PubMed  CAS  Google Scholar 

  46. Mancini DM, Bolinger L, Li H, Kendrick K, Chance B, Wilson JR (1994) Validation of near-infrared spectroscopy in humans. J Appl Physiol 77:2740–2747

    PubMed  CAS  Google Scholar 

  47. Esaki K, Hamaoka T, Radegran G, Boushel R, Hansen J, Katsumura T, Haga S, Mizuno M (2005) Association between regional quadriceps oxygenation and blood oxygen saturation during normoxic one-legged dynamic knee extension. Eur J Appl Physiol Occup Physiol 95:361–370

    Article  Google Scholar 

  48. Costes F, Barthelemy JC, Feasson L, Busso T, Geyssant A, Denis C (1996) Comparison of muscle near-infrared spectroscopy and femoral blood gases during steady-state exercise in humans. J Appl Physiol 80:1345–1350

    Article  PubMed  CAS  Google Scholar 

  49. MacDonald MJ, Tarnopolsky MA, Green HJ, Hughson RL (1999) Comparison of femoral blood gases and muscle near-infrared spectroscopy at exercise onset in humans. J Appl Physiol 86:687–693

    PubMed  CAS  Google Scholar 

  50. Sako T, Hamaoka T, Higuchi H, Kurosawa Y, Katsumura T (2001) Validity of NIR spectroscopy for quantitatively measuring muscle oxidative metabolic rate in exercise. J Appl Physiol 90(1):338–344

    PubMed  CAS  Google Scholar 

  51. Boushel R, Pott F, Madsen P, Radegran G, Nowak M, Quistorff B, Secher N (1998) Muscle metabolism from near infrared spectroscopy during rhythmic handgrip in humans. Eur J Appl Physiol Occup Physiol 79:41–48

    Article  PubMed  CAS  Google Scholar 

  52. Homma T, Hamaoka T, Sako T, Murakami M, Esaki K, Kime R, Ueda C, Nagasawa T, Katsumura T (2005) Muscle oxidative metabolism accelerates with mild acidosis during incremental intermittent isometric plantar flexion exercise. Dyn Med 4:2

    Article  PubMed  Google Scholar 

  53. Ichimura S, Murase N, Osada T, Kime R, Homma T, Ueda C, Nagasawa T, Motobe M, Hamaoka T, Katsumura T (2006) Age and activity status affect muscle reoxygenation time after maximal cycling exercise. Med Sci Sports Exerc 38:1277–1281

    Article  PubMed  Google Scholar 

  54. Boone J, Koppo K, Barstow TJ, Bouckaert J (2009) Pattern of deoxy[Hb + Mb] during ramp cycle exercise: influence of aerobic fitness status. Eur J Appl Physiol 105(6):851–859

    Article  PubMed  Google Scholar 

  55. Ferreira LF, Townsend DK, Lutjemeier BJ, Barstow TJ (2005) Muscle capillary blood flow kinetics estimated from pulmonary O2 uptake and near-infrared spectroscopy. J Appl Physiol 98(5):1820–1828

    Article  PubMed  Google Scholar 

  56. Hamaoka T, Mizuno M, Katsumura T, Osada T, Shimomitsu T, Quistorff B (1998) Correlation between indicators determined by near infrared spectroscopy and muscle fiber types in humans. Jpn J Appl Physiol 28(5):339–344

    Google Scholar 

  57. Hiroyuki H, Hamaoka T, Sako T, Nishio S, Kime R, Murakami M, Katsumura T (2002) Oxygenation in vastus lateralis and lateral head of gastrocnemius during treadmill walking and running in humans. Eur J Appl Physiol 87:343–349

    Article  PubMed  CAS  Google Scholar 

  58. Bae S, Hamaoka T, Katsumura T, Shiga T, Ohno H, Haga S (2000) Comparison of muscle oxygen consumption measured by near infrared continuous wave spectros copy during supramaximal and intermittent pedalling exercise. Int J Sports Med 21:168–174

    Article  PubMed  CAS  Google Scholar 

  59. Bhambhani Y, Maikala R, Esmail S (2001) Oxygenation trends in vastus lateralis muscle during incremental and intense anaerobic cycle exercise in young men and women. Eur J Appl Physiol 84:547–556

    Article  PubMed  CAS  Google Scholar 

  60. Neary JP (2004) Application of near infrared spectroscopy to exercise sports science. Can J Appl Physiol 29:488–503

    Article  PubMed  Google Scholar 

  61. Legrand R, Ahmaidi S, Moalla W, Chocquet D, Marles A, Prieur F, Mucci P (2005) O2 arterial desaturation in endurance athletes increases muscle deoxygenation. Med Sci Sports Exerc 37:782–788

    Article  PubMed  Google Scholar 

  62. Ding H, Wang G, Lei W, Wang R, Huang L, Xia Q, Wu J (2001) Non-invasive quantitative assessment of oxidative metabolism in quadriceps muscles by near infrared spectroscopy. Br J Sports Med 35:441–444

    Article  PubMed  CAS  Google Scholar 

  63. Hoffman JR, Im J, Rundell KW, Kang J, Nioka S, Spiering BA, Kime R, Chance B (2003) Effect of muscle oxygenation during resistance exercise on anabolic hormone response. Med Sci Sports Exerc 35:1929–1934

    Article  PubMed  CAS  Google Scholar 

  64. Costes F, Prieur F, Feasson L, Geyssant A, Barthelemy JC, Denis C (2001) Influence of training on NIRS muscle oxygen saturation during submaximal exercise. Med Sci Sports Exerc 33:1484–1489

    Article  PubMed  CAS  Google Scholar 

  65. Motobe M, Murase N, Osada T, Homma T, Ueda C, Nagasawa T, Kitahara A, Ichimura S, Kurosawa Y, Katsumura T, Hoshika A, Hamaoka T (2004) Noninvasive monitoring of deterioration in skeletal muscle function with forearm cast immobilization and the prevention of deterioration. Dyn Med 3:2

    Article  PubMed  Google Scholar 

  66. Kime R, Im J, Moser D, Lin Y, Nioka S, Katsumura T, Chance B (2005) Reduced heterogeneity of muscle deoxygenation during heavy bicycle exercise. Med Sci Sports Exerc 37:412–417

    Article  PubMed  Google Scholar 

  67. Miura H, McCully K, Hong L, Nioka S, Chance B (2001) Regional difference of muscle oxygen saturation and blood volume during exercise determined by near infrared imaging device. Jpn J Physiol 51:599–606

    Article  PubMed  CAS  Google Scholar 

  68. Wolf U, Wolf M, Choi JH, Paunescu LA, Safonova LP, Michalos A, Gratton E (2003) Mapping of hemodynamics on the human calf with near infrared spectroscopy and the influence of the adipose tissue thickness. Adv Exp Med Biol 510:225–230

    Article  PubMed  CAS  Google Scholar 

  69. Hanada A, Okita K, Yonezawa K, Ohtsubo M, Kohya T, Murakami T, Nishijima H, Tamura M, Kitabatake A (2000) Dissociation between muscle metabolism and oxygen kinetics during recovery from exercise in patients with chronic heart failure. Heart 83:161–166

    Article  PubMed  CAS  Google Scholar 

  70. Matsui S, Bolinger L, Li H, Kendrick K, Chance B, Wilson JR (1995) Assessment of working muscle oxygenation in patients with chronic heart failure. Am Heart J 125:690–695

    Article  Google Scholar 

  71. Watanabe S, Ishii C, Takeyasu N, Ajisaka R, Nishina H, Morimoto T, Sakamoto K, Eda K, Ishiyama M, Saito T, Aihara H, Arai E, Toyama M, Shintomi Y, Yamaguchi I (2005) Assessing muscle vasodilation using near-infrared spectroscopy in cardiac patients. Circ J 69:802–814

    Article  PubMed  Google Scholar 

  72. Lanfranconi F, Borrelli E, Ferri A, Porcelli S, Maccherini M, Chiavarelli M, Grassi B (2006) Noninvasive evaluation of skeletal muscle oxidative metabolism after heart transplant. Med Sci Sports Exerc 38:1374–1383

    Article  PubMed  CAS  Google Scholar 

  73. Sperandio PA, Borghi-Silva A, Barroco A, Neder JA (2009) Microvascular oxygen delivery-to-utilization mismatch at the onset of heavy-intensity exercise in optimally treated patients with CHF. Am J Physiol Heart Circ Physiol 297:H1720–H1728

    Article  PubMed  CAS  Google Scholar 

  74. Gerovasili V, Drakos S, Kravari M, Malliaras K, Karatzanos E, Dimopoulos S, Tasoulis A, Anastasiou-Nana M, Roussos C, Nanas S (2009) Physical exercise improves the peripheral microcirculation of patients with chronic heart failure. J Cardiopulm Rehabil Prev 29:385–391

    Article  PubMed  Google Scholar 

  75. Serres I, Hayot M, Prefaut C, Mercier J (1998) Skeletal muscle abnormalities in patients with COPD: contribution to exercise intolerance. Med Sci Sports Exerc 30:1019–1027

    Article  PubMed  CAS  Google Scholar 

  76. Maltais F, LeBlanc P, Jobin J, Casaburi R (2000) Peripheral muscle dysfunction in chronic obstructive pulmonary disease. Clin Chest Med 21:665–677

    Article  PubMed  CAS  Google Scholar 

  77. Okamoto T, Kanazawa H, Hirata K, Yoshikawa J (2003) Evaluation of oxygen uptake kinetics and oxygen kinetics of peripheral skeletal muscle during recovery from exercise in patients with chronic obstructive pulmonary disease. Clin Physiol Funct Imaging 23:257–262

    Article  PubMed  Google Scholar 

  78. Puente-Maestu L, Tena T, Trascasa C, Perez-Parra J, Godoy R, Garcia MJ, Stringer WW (2003) Training improves muscle oxidative capacity and oxygenation recovery kinetics in patients with chronic obstructive pulmonary disease. Eur J Appl Physiol Occup Physiol 88:580–587

    Article  CAS  Google Scholar 

  79. Rondelli RR, Dal Corso S, Simões A, Malaguti C (2009) Methods for the assessment of peripheral muscle fatigue and its energy and metabolic determinants in COPD. J Bras Pneumol 35:1125–1135

    Article  PubMed  Google Scholar 

  80. Bank W, Chance B (1994) An oxidative defect in metabolic myopathies: diagnosis by noninvasive tissue oximetry. Ann Neurol 36:830–837

    Article  PubMed  CAS  Google Scholar 

  81. Grassi B, Porcelli S, Marzorati M, Lanfranconi F, Vago P, Marconi C, Morandi L (2009) Metabolic myopathies: functional evaluation by analysis of oxygen uptake kinetics. Med Sci Sports Exerc 41:2120–2127

    Article  PubMed  Google Scholar 

  82. Lynch DR, Lech G, Farmer JM, Balcer LJ, Bank W, Chance B, Wilson RB (2002) Near infrared muscle spectroscopy in patients with Friedreich’s ataxia. Muscle Nerve 25:664–673

    Article  PubMed  CAS  Google Scholar 

  83. Grassi B, Marzorati M, Lanfranconi F, Ferri A, Longaretti M, Stucchi A, Vago P, Marconi C, Morandi L (2007) Impaired oxygen extraction in metabolic myopathies: detection and quantification by near-infrared spectroscopy. Muscle Nerve 35:510–520

    Article  PubMed  CAS  Google Scholar 

  84. McCully KK, Halber C, Posner JD (1994) Exercise-induced changes in oxygen saturation in the calf muscles of elderly subjects with peripheral vascular disease. J Gerontol 49:B128–B134

    Article  PubMed  CAS  Google Scholar 

  85. McCully KK, Iotti S, Kendrick K, Wang Z, Posner JD, Leigh J Jr, Chance B (1994) Simultaneous in vivo measurements of HbO2 saturation and PCr kinetics after exercise in normal humans. J Appl Physiol 77:5–10

    PubMed  CAS  Google Scholar 

  86. Mohler ER 3rd, Lech G, Supple GE, Wangb H, Chance B (2006) Impaired exercise-induced blood volume in type 2 diabetes with or without peripheral arterial disease measured by continuous-wave near-infrared spectroscopy. Diabetes Care 29:1856–1859

    Article  PubMed  Google Scholar 

  87. Komiyama T, Shigematsu H, Yasuhara H, Hosoi Y, Muto T (1996) An objective evaluation of muscle oxygen content in claudicants receiving drug therapy. Int Angiol 15:215–218

    PubMed  CAS  Google Scholar 

  88. Komiyama T, Shigematsu H, Yasuhara H, Muto T (2000) Near-infrared spectroscopy grades the severity of intermittent claudication in diabetics more accurately than ankle pressure measurement. Br J Surg 87:459–466

    Article  PubMed  CAS  Google Scholar 

  89. Malagoni AM, Felisatti M, Mandini S, Mascoli F, Manfredini R, Basaglia N, Zamboni P, Manfredini F (2010) Resting muscle oxygen consumption by near-infrared spectroscopy in peripheral arterial disease: a parameter to be considered in a clinical setting? Angiology 61:530–536

    Article  PubMed  Google Scholar 

  90. Bauer TA, Brass EP, Hiatt WR (2004) Impaired muscle oxygen use at onset of exercise in peripheral arterial disease. J Vasc Surg 40:488–493

    Article  PubMed  Google Scholar 

  91. Pedersen BL, Baekgaard N, Quistorff B (2009) Muscle mitochondrial function in patients with type 2 diabetes mellitus and peripheral arterial disease: implications in vascular surgery. Eur J Vasc Endovasc Surg 38:356–364

    Article  PubMed  CAS  Google Scholar 

  92. Hosoi Y, Yasuhara H, Shigematsu H, Aramoto H, Komiyama T, Muto T (1997) A new method for the assessment of venous insufficiency in primary varicose veins using near-infrared spectroscopy. J Vasc Surg 26:53–60

    Article  PubMed  CAS  Google Scholar 

  93. Yamaki T, Nozaki M, Sakurai H, Takeuchi M, Soejima K, Kono T (2006) The utility of quantitative calf muscle near-infrared spectroscopy in the follow-up of acute deep vein thrombosis. J Thromb Haemost 4:800–806

    Article  PubMed  CAS  Google Scholar 

  94. Bhambhani Y, Tuchak C, Burnham R, Jeon J, Maikala R (2000) Quadriceps muscle deoxygenation during functional electrical stimulation in adults with spinal cord injury. Spinal Cord 38:630–638

    Article  PubMed  CAS  Google Scholar 

  95. Kawashima N, Nakazawa K, Akai M (2005) Muscle oxygenation of the paralyzed lower limb in spinal cord-injured persons. Med Sci Sports Exerc 37:915–921

    Article  PubMed  CAS  Google Scholar 

  96. Crameri RM, Cooper P, Sinclair PJ, Bryant G, Weston A (2004) Effect of load during electrical stimulation training in spinal cord injury. Muscle Nerve 29:104–111

    Article  PubMed  Google Scholar 

  97. Matsumoto N, Ichimura S, Hamaoka T, Osada T, Hattori M, Miyakawa S (2006) Impaired muscle oxygen metabolism in uremic children: improved after renal transplantation. Am J Kidney Dis 48:473–480

    Article  PubMed  CAS  Google Scholar 

  98. Kuge N, Suzuki T, Isoyama S (2005) Does handgrip exercise training increase forearm ischemic vasodilator responses in patients receiving hemodialysis? Tohoku J Exp Med 207:303–312

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to acknowledge funding support from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takafumi Hamaoka M.D., Ph.D. .

Editor information

Editors and Affiliations

Appendices

Problems

  1. 5.1

    How would you quantify muscle NIR signals?

  2. 5.2

    List the various muscle NIR indicators. Which indicator reflects muscle oxidative function? How?

Further Reading

Ferrari M, Muthalib M, Quaresima V (2011) The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments. Philos Trans A Math Phys Eng Sci 369:4577–4590.

Hamaoka T, McCully K, Quaresima V, Yamamoto K, Chance B (2007) Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans. J Biomed Opt 12(6):62105–62120.

Hamaoka T, McCully K, Quaresima V, Yamamoto K, Chance B (2011) The use of muscle near-infrared spectroscopy in sport, health, and medical sciences: recent developments. Philos Trans A Math Phys Eng Sci 369:4591–4604.

Yamamoto K, Niwayama M, Lin L, Shiga T, Kudo N, Takahashi M (1998) Accurate NIRS measurement of muscle oxygenation by correcting the influence of a subcutaneous fat layer. Proc SPIE 3194:166–173.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hamaoka, T. (2013). In-Vivo NIRS and Muscle Oxidative Metabolism. In: Jue, T., Masuda, K. (eds) Application of Near Infrared Spectroscopy in Biomedicine. Handbook of Modern Biophysics, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6252-1_5

Download citation

Publish with us

Policies and ethics