Skip to main content

Membrane Photobioreactor as a Device to Increase CO2 Mitigation by Microalgae

  • Chapter
  • First Online:
Advances in Biofuels

Abstract

The integration of a membrane contactor with a photobioreactor serves two major purposes for the mitigation of CO2 by microalgae, i.e., to enhance the mass transfer and interfacial contact between two different phases and to increase the exchange process of CO2–O2 by microalgae in the photobioreactor. The membrane integrated with a photobioreactor for CO2 mitigation by microalgae can be considered as a relatively new field, and only four or five related research efforts have been published in the literature, suggesting that a significant amount of work remains to be done in this field. In addition, all of the authors agreed that a membrane contactor is capable of achieving better mass transfer than the conventional approach of using a separation column in the gas–liquid separation process. One significant problem associated with using a membrane as a CO2–O2 gas exchanger is its susceptibility to pore fouling due to the micron-size cells of the microalgae. However, pore fouling can be prevented by using a hydrophobic membrane contactor and appropriate operating conditions, both of which are discussed in detail in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrahari GK, Verma N, Bhattacharya PK (2011) Application of hollow fiber membrane contactor for the removal of carbon dioxide from water under liquid–liquid extraction mode. J Membr Sci 375:323–333

    Article  Google Scholar 

  • Bakeri G, Matsuura T, Ismail AF, Rana D (2012) A novel surface modified polyetherimide hollow fiber membrane for gas–liquid contacting processes. Sep Purif Technol 89:160–170

    Article  Google Scholar 

  • Bamperng S, Suwannachart T, Atchariyawut S, Jiraratananon R (2010) Ozonation of dye wastewater by membrane contactor using PVDF and PTFE membranes. Sep Purif Technol 72:186–193

    Article  Google Scholar 

  • Bayless D, Stuart B (2009) Sustainable energy and carbon recycling through microalgal engineering. Energeia 20(4):1–6

    Google Scholar 

  • Bentley CD, Carroll PM, Watanab WO (2008) Intensive rotifer production in a pilot-scale continuous culture recirculating system using nonviable microalgae and an ammonia neutralizer. J World Aquac Soc 39(5):625–635

    Article  Google Scholar 

  • Bottino A, Capannelli G, Comite A, Felice RD, Firpo R (2008) CO2 removal from a gas stream by membrane contactor. Sep Purif Technol 59:85–90

    Article  Google Scholar 

  • Brindley C, Fernandez FGA, Fernandez-Sevilla JM (2011) Analysis of light regime in continuous light distributions in photobioreactors. Bioresour Technol 102:3138–3148

    Article  Google Scholar 

  • Carvalho AP, Malcata FX (2001) Transfer of carbon dioxide within cultures of microalgae: plain bubbling versus hollow-fiber modules. Biotechnol Prog 17:265–272

    Article  Google Scholar 

  • Cath TY, Adams D, Childress AE (2005) Membrane contactor processes for wastewater reclamation in space II. Combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater. J Membr Sci 257:111–119

    Article  Google Scholar 

  • Cheng L, Zhang L, Chen H, Gao C (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol 50:324–329

    Article  Google Scholar 

  • Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS (2008) Reduction of CO2 by a high density culture of Chlorella sp. in a semic Continuous photobioreactor. Bioresour Technol 99:3389–3396

    Article  Google Scholar 

  • Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilisation of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838

    Article  Google Scholar 

  • Choi SL, Suh IS, Lee CG (2003) Lumostatic operation of bubble column photobioreactors for Haematococcus pluvialis cultures using a specific light uptake rate as a control parameter. Enzyme Microb Technol 33:403–409

    Article  Google Scholar 

  • Cuaresma M, Janssen M, Vilchez C, Wijffels RH (2011) Horizontal or vertical photobioreactors? How to improve microalgae photosynthetic efficiency. Bioresour Technol 102:5129–5137

    Article  Google Scholar 

  • Dindore VY, Brilman BWF, Feron PHM, Versteeg GF (2004) CO2 absorption at elevated pressures using a hollow fiber membrane contactor. J Membr Sci 235:99–109

    Article  Google Scholar 

  • Dindore VY, Brilman BWF, Feron PHM, Versteeg GF (2005) Hollow fiber membrane contactor as a gas–liquid model contactor. Chem Eng Sci 60:467–479

    Article  Google Scholar 

  • Doucha J, Straka F, Livansky K (2005) Utilisation of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412

    Article  Google Scholar 

  • Ethier S, Woisard K, Vaughan D, Wen Z (2011) Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresour Technol 102:88–93

    Article  Google Scholar 

  • Fabregas J, Otero A, Mased A, Dominguez A (2001) Two-stage cultures for the production of Astaxanthin from Haematococcus pluvialis. J Biotechnol 89:65–71

    Article  Google Scholar 

  • Fan LH, Zhang YT, Cheng LH, Zhang L, Tang DS, Chen HL (2007) Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane photobioreactor. Chem Eng Technol 30:1094–1099

    Article  Google Scholar 

  • Fan LH, Zhang YT, Cheng LH, Zhang L, Chen HL (2008) Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris. J Membr Sci 325:336–345

    Article  Google Scholar 

  • Farges B, Duchez D, Dussap CG, Cornet J-F (2012) Preliminary characterization of carbon dioxide transfer in a hollow fiber membrane module as a possible solution for gas–liquid transfer in microgravity conditions. Adv Space Res 49:254–261

    Article  Google Scholar 

  • Feron PHM, Jansen AE (1995) Capture of carbon dioxide using membrane gas absorption and reuse in the horticultural industry. Energy Conversion Manage 36(6–9):411–414

    Article  Google Scholar 

  • Ferreira BS, Fernandes HL, Reis A, Mateus M (1998) Microporous hollow fibres for carbon dioxide absorption: mass transfer model fitting and the supplying of carbon dioxide to microalgal cultures. Chem Technol Biotechnol 71:61–70

    Article  Google Scholar 

  • Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, Melis A (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18:506–511

    Article  Google Scholar 

  • Gonzalez LE, Bashan Y (2000) Increased growth of the microalga Chlorella vulgaris when ­coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium azospirillum brasilense. Appl Environ Microbiol 66(4):1527–1531

    Article  Google Scholar 

  • Hai T, Ahlers H, Gorenflo V, Steinbuchel A (2000) Axenic cultivation of anoxygenic phototrophic bacteria, cyanobacteria and microalgae in a new closed tubular glass photobioreactor. Appl Microbiol Biotechnol 53:383–389

    Article  Google Scholar 

  • Hoekema S, Bijmans M, Janssen M, Tramper J, Wijffles RH (2002) A pneumatically agitated flat-­panel photobioreactor with gas re-circulation: anaerobic photoheterotrophic cultivation of a purple non-sulfur bacterium. Int J Hydrogen Energy 27:1331–1338

    Article  Google Scholar 

  • Illman AM, Scragg AH, Shales SW (2001) Increase in chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27:631–635

    Article  Google Scholar 

  • Kaewpintong K, Shotipruk A, Powtongsook S, Pavasant P (2007) Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. Bioresour Technol 98:288–295

    Article  Google Scholar 

  • Khaisri S, deMotigny D, Tontiwachwuthikul P, Jiraratananon R (2009) Comparing membrane resistance and absorption performance of three different membranes in a gas absorption membrane contactor. Sep Purif Technol 65:290–297

    Article  Google Scholar 

  • Kumar PS, Hogendoorn JA, Feron PHM, Versteeg GF (2002) New absorption liquids for the removal of CO2 from dilute gas streams using membrane contactors. Chem Eng Sci 57:1639–1651

    Article  Google Scholar 

  • Lee JS, Sung KD, Kim MS, Park SC, Lee KW (1996) Current aspects of carbon dioxide fixation by microalgae in Korea, symposium on the capture, utilisation and disposal of CO2, Fall (Orlando) 41(4)

    Google Scholar 

  • Lv Y, Yu X, Tu S-T, Yan J, Dahlquist E (2012) Experimental studies on simultaneous removal of CO2 and SO2 in a polypropylene hollow fiber membrane contactor. Appl Energy 97:283–288

    Article  Google Scholar 

  • Mansourizadeh A, Ismail AF (2009) Hollow fiber gas–liquid membrane contactors for acid capture: a review. J Hazard Mater 171:38–53

    Article  Google Scholar 

  • Mattson S (2010) Rising sea drives Panama islanders to mainland, reuters news, 12 July 2010. Available online at http://www.reuters.com/assets/print?aid=USTRE66B0PL20100712. Accessed 16 July 2010

  • Mavroudi M, Kaldis SP, Sakellaropoulus GP (2003) Reduction of CO2 emissions by a membrane contacting process. Fuel 82:2153–2159

    Article  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 6:486–496

    Article  Google Scholar 

  • Moreno J, Vargas MA, Olivares H, Rivas J, Guerrero MG (1998) Exopolysaccharide production by the cyanobacterium Anabaena sp. ATCC 33047 in batch and continuous culture. J Biotechnol 60:175–182

    Article  Google Scholar 

  • Negoro M, Hamasaki A, Ikuta Y, Makita T, Hirayama K, Suzuki S (1993) Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Appl Biochem Biotechnol 39(40):643–653

    Article  Google Scholar 

  • Nishikawa N, Ishibashi M, Ohta H, Akutsu N, Matsumoto H, Kamata T, Kitamura H (1995) CO2 removal by hollow-fiber gas–liquid contactor. Energ Conversion Manage 36(6–9):415–418

    Article  Google Scholar 

  • Nymeijer DC, Folkers B, Breebaart I, Mulder MHV, Wessling M (2004) Selection of top layer materials for gas–liquid membrane contactors. J Appl Polym Sci 92:323–334

    Article  Google Scholar 

  • Ota M, Kato Y, Watanabe M, Sato Y, Smith RL, Rosello-Sastre S, Posten C, Inomata H (2011) Effects of nitrate and oxygen on photoautotrophic lipid production from Chlorococcum littorale. Bioresour Technol 102:3286–3292

    Article  Google Scholar 

  • Pedersen OF, Dannstrom H (1997) Separation of carbon dioxide from offshore gas turbine exhaust. Energy Convers Manage 38:S81–S86

    Article  Google Scholar 

  • Phattaranawik J, Leiknes T, Pronk W (2005) Mass transfer studies in flat-sheet membrane contactor with ozonation. J Membr Sci 247:153–167

    Article  Google Scholar 

  • Pors Y, Wustenberg A, Ehwald R (2010) A batch culture method for microalgae and cyanobacteria with CO2 supply through polyethylene membrane. J Phycol 46:825–883

    Article  Google Scholar 

  • Pruvost J, Vooren GV, Cogne G, Legrand J (2009) Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresour Technol 100:5988–5995

    Article  Google Scholar 

  • Rodrıguez JJG, Miron AS, Camacho FG, Garcıa MCC, Belarbi EH, Grima EM (2010) Culture of dinoflagellates in a fed-batch and continuous stirred-tank photobioreactors: growth, oxidative stress and toxin production. Process Biochem 45:660–666

    Article  Google Scholar 

  • Sananurak C, Lirdwitayaprasit T, Menasveta P (2009) Development of a closed-recirculating, continuous culture system for microalga (Tetraselmis suecica) and rotifer (Brachionus plicatilis) production. Sci Asia 35:118–124

    Article  Google Scholar 

  • Sanchez JF, Fernandez-Sevill JM, Acien FG, Ceron MC, Perez-Parra J, Molina-Grima E (2008) Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl Microbiol Biotechnol 79:719–729

    Article  Google Scholar 

  • Sarbatly R, Suali E (2012) A potential of carbon dioxide utilisation by microalgae in Malaysia. Int J Glob Environ Issue 12(2–4):150–160

    Article  Google Scholar 

  • Shao J, Liu H, He Y (2008) Boiler feed water deoxygenation using hollow fiber membrane contactor. Desalination 234:370–377

    Article  Google Scholar 

  • Simons K, Nijmeijer K, Wessling M (2009) Gas–liquid membrane contactors for CO2 removal. J Membr Sci 340:214–220

    Article  Google Scholar 

  • Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Article sea ice decline: faster than forecast. Geophys Res Lett 34:L09501. doi:10.1029/2007/GLo29703

    Article  Google Scholar 

  • Suali E, Sarbatly R (2012) Microalgae conversion to biofuel. Renew Sustain Energy Rev 16(6):4316–4342

    Article  Google Scholar 

  • Suali E, Sarbatly R, Shaleh SRM (2012) Characterization of local microalga species toward biofuel production. International conference on applied energy, ICAE 2012, 5–8 Jul 2012, Suzhou, China. Paper ID: ICAE2012-10331

    Google Scholar 

  • Swingedouw D, Fichefet T, Huybrechts P, Goosse H, Driesschaert E, Loutre MF (2008) Antarctic ice sheet melting provides negative feedbacks on future climate warming. Geophys Res Lett 35:L17705. doi:10.1029/2008GL034410

    Article  Google Scholar 

  • Sydney EB, Sturm W, deCarvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR (2010) Potential of carbon dioxide fixation by industrial important microalgae. Bioresour Technol 101:5892–5896

    Article  Google Scholar 

  • Takahashi N, Furutaa Y, Fukunaga H, Takatsukaa T, Manob H, Fujioka Y (2011) Effects of membrane properties on CO2 recovery performance in a gas absorption membrane contactor. Energy Procedia 4:693–698

    Article  Google Scholar 

  • The Star Online (2010) Sea levels rising in the peninsula, says Kurup, News. Available online at http://www.thestar.com.my/services/printerfriendly.asp?file=/2010/7/23/nation/6722124.asp&sec=nation.Accessed 20 July 2010

  • Vogt M, Goldschmidt R, Bathen D, Epp B, Fahlenkamp H (2011) Comparison of membrane contactor and structured packings for CO2 absorption. Energy Procedia 4:1471–1477

    Article  Google Scholar 

  • World Meteorological Organization (2008) WMO statement on the status of the global climate in 2008. Geneva 2, Switzerland, Dec 2008. p 16. Report No. 1039

    Google Scholar 

  • World Meteorological Organization (2011) WMO statement on the status of the global climate in 2011. Geneva 2, Switzerland, Dec 2011. p 16. Report No. 1039

    Google Scholar 

  • Yan S, Fang M-X, Zhang W-F, Wang S-Y, Xu Z-K, Luo Z-Y, Cen K-F (2007) Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting. Fuel Process Technol 88:501–511

    Article  Google Scholar 

  • Yanchao L, Zhiwu H, Xianping Z, Fangqin L, Ji R (2012) Study on the gas–liquid two-phase flow two-phase flow characteristics of carbon dioxide removal by membrane method. Adv Mater Res 347–353:1797–1800

    Google Scholar 

  • Yeon S-H, Lee K-S, Sea B, Park Y-I, Lee K-H (2005) Application of pilot-scale membrane contactor hybrid system for removal of carbon dioxide from flue gas. J Membr Sci 257:156–160

    Article  Google Scholar 

  • Yongmanltchal W, Ward OP (1992) Growth and eicosapentaenoic acid production by Phaeodactylum tricornutum in batch and continuous culture systems. J Am Oil Chem Soc 69(6):584–590

    Article  Google Scholar 

  • Yoo C, Jun S, Lee J, Ahn CY, Oh HM (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101:S71–S74

    Article  Google Scholar 

  • Zhang K, Miyachi S, Kurano N (2001) Evaluation of a vertical flat-plate photobioreactor for outdoor biomass production and carbon dioxide bio-fixation: effects of reactor dimensions, irradiation and cell concentration on the biomass productivity and irradiation utilization efficiency. Appl Microbiol Biotechnol 55:428–433

    Article  Google Scholar 

  • Zhang H-Y, Wang R, Liang DT, Tay JH (2008) Theoretical and experimental studies of membrane wetting in the membrane gas–liquid contacting process for CO2 absorption. J Membr Sci 308:162–170

    Article  Google Scholar 

  • Zijffers JWF, Salim S, Janssen M, Tramper J, Wijffels RH (2008) Capturing sunlight into a photobioreactor: ray tracing simulations of the propagation of light from capture to distribution into the reactor. Chem Eng J 145:316–327

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Research Grant LRGS/TD/2011/UMP/PG/04 from Ministry of Higher Education of Malaysia. This work was also supported by the Borneo Marine Research Institute, Universiti Malaysia Sabah, Malaysia.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sarbatly, R.H., Suali, E. (2013). Membrane Photobioreactor as a Device to Increase CO2 Mitigation by Microalgae. In: Pogaku, R., Sarbatly, R. (eds) Advances in Biofuels. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6249-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6249-1_14

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-6248-4

  • Online ISBN: 978-1-4614-6249-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics