Advertisement

Density Matrix: Entangled States

  • Belal E. Baaquie
Chapter

Abstract

The Hilbert space for a quantum system contains states that behave in a manner that is similar to classical objects. There are, however, also states in Hilbert space that are enigmatic and nonclassical in the sense of being forbidden by classical physics.

Keywords

Density Matrix Tensor Product State Vector Quantum System Entangle State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, Holland (1998)Google Scholar
  2. 2.
    Aspect, A.: Bell’s inequality test: more ideal than ever. Nature 398(189), 1408–1427 (1999)Google Scholar
  3. 3.
    Baaquie, B.E.: Quantum Finance. Cambridge University Press, Cambridge (2004)MATHCrossRefGoogle Scholar
  4. 4.
    Ballentine, L.E.: Quantum Mechanics: A Modern Development. World Scientific, Singapore (1998)MATHGoogle Scholar
  5. 5.
    Baaquie, B.E.: Path Integrals in Quantum Mechanics, Quantum Field Theory and Superstrings. Cambridge University Press, Cambridge (2013)Google Scholar
  6. 6.
    Bell, J.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (2004)MATHCrossRefGoogle Scholar
  7. 7.
    Odom, B., Hanneke, D., D’Urso, B., Gabrielse, G.: New measurement of the electron magnetic moment using a one-electron quantum cyclotron. Phys. Rev. Lett. 97, 030801 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    DeWitt, B.S., Graham, N.: The Many-Worlds Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1973)Google Scholar
  9. 9.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)ADSCrossRefGoogle Scholar
  10. 10.
    Dirac, P.A.M.: The Principles of Quantum Mechanics. Oxford University Press, Oxford (1999)Google Scholar
  11. 11.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)ADSMATHCrossRefGoogle Scholar
  12. 12.
    Wigner, E.P.: The problem of measurement. Am. J. Phys. 31, 6–15 (1963)MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Feynman, R.P.: The Character of Physical Law. Penguin Books, Baltimore (2007)Google Scholar
  14. 14.
    Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw Hill, New York (1960)Google Scholar
  15. 15.
    Gottfried, K., Yan, T.-M.: Quantum Mechanics. Springer, Germany (2003)MATHGoogle Scholar
  16. 16.
    Greenstein, G., Zajonc, A.G.: The Quantum Challenge, 2nd edn. Jones and Bartlett, Boston (2006)Google Scholar
  17. 17.
    Heisenberg, W.: The Physical Principals of the Quantum Theory. Dover, New York (1949)Google Scholar
  18. 18.
    Heisenberg, W.: Physics and Philosophy: The Revolution in Modern Science. Prometheus Books, New York (1999)Google Scholar
  19. 19.
    Isham, C.J.: Lectures on Quantum Theory. Imperial College Press, London (1995)MATHGoogle Scholar
  20. 20.
    Klyachko, A.A., Can, M.A., Binicioğlu, S., Shumovsky, A.S.: Simple test for hidden variables in spin-1 systems. Phys. Rev. Lett. 101, 020403 (2008)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17 (1967)Google Scholar
  22. 22.
    Kurzyński, P., Ramanathan, R., Kaszlikowski, D.: Entropic test of quantum contextuality. Phys. Rev. Lett. 109, 020404 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Lawden, D.F.: The Mathematical Principles of Quantum Mechanics. Dover, New york (2005)MATHGoogle Scholar
  24. 24.
    Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics. Addison-Wesley, Reading (1964)Google Scholar
  25. 25.
    Mackey, G.W.: Mathematical Foundations of Quantum Mechanics. Dover, New York (2004)Google Scholar
  26. 26.
    Major, F.G., Gheorghe, V.N., Werth, G.: Charged Particle Traps: Physics and Techniques of Charged Particle Field Confinement. Springer, Germany (2010)Google Scholar
  27. 27.
    Nielsen, M.A., Chang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  28. 28.
    Muga, G.: Time in Quantum Mechanics. Springer, Berlin (2008)MATHGoogle Scholar
  29. 29.
    Muller, H., Peter, A., Chew, S.: A precision measurement of the gravitational redshift by the interference of matter waves. Nature 463(3), 926–929 (1983)ADSCrossRefGoogle Scholar
  30. 30.
    Newton, R.G.: The Truth of Science: Physical Theories and Reality. Harvard University Press, Cambridge (1997)Google Scholar
  31. 31.
    Healy, R.: The Philosophy of Quantum Mechanics. Cambridge University Press, Cambridge (2008)Google Scholar
  32. 32.
    Ramanathan, R., Soeda, A.A., Kurzyński, P., Kaszlikowsk, D.: Generalized monogamy of contextual inequalities from the no-disturbance principle. Phys. Rev. Lett. 109, 050404 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Schlosshauer, M.A.: Decoherence: and the Quantum-to-Classical Transition. Springer, Germany (2010)Google Scholar
  34. 34.
    Stapp, H.P.: The Copenhagen interpretation. Am. J. Phys. 40 (1963)Google Scholar
  35. 35.
    Streater, R.F.: Classical and quantum probability. J. Math. Phys. 41, 3556–3603 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  36. 36.
    von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1983)Google Scholar
  37. 37.
    Yu, S., Oh, C.H.: State-independent proof of Kochen-Specker theorem with 13 rays. Phys. Rev. Lett. 108, 030402 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Belal E. Baaquie
    • 1
  1. 1.Department of PhysicsNational University of SingaporeSingaporeSingapore

Personalised recommendations