Skip to main content

Conclusions

  • Chapter
  • First Online:
  • 3136 Accesses

Abstract

Quantum mechanics is an empirical science, with experimental observations being the final and sole criterion of what is true and what is false. The founders of quantum mechanics, in particular Niels Bohr and Werner Heisenberg, were at pains to emphasize that theoretical physics should and could explain only the results of experiments. They stayed away from trying to explain what is Nature as such, independent of observations, with the implicit message that such an explanation would have no appropriate basis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, Holland (1998)

    Google Scholar 

  2. Aspect, A.: Bell’s inequality test: more ideal than ever. Nature 398(189), 1408–1427 (1999)

    Google Scholar 

  3. Baaquie, B.E.: Quantum Finance. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  4. Ballentine, L.E.: Quantum Mechanics: A Modern Development. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  5. Baaquie, B.E.: Path Integrals in Quantum Mechanics, Quantum Field Theory and Superstrings. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  6. Bell, J.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  7. Odom, B., Hanneke, D., D’Urso, B., Gabrielse, G.: New measurement of the electron magnetic moment using a one-electron quantum cyclotron. Phys. Rev. Lett. 97, 030801 (2006)

    Article  ADS  Google Scholar 

  8. DeWitt, B.S., Graham, N.: The Many-Worlds Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1973)

    Google Scholar 

  9. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

    Article  ADS  Google Scholar 

  10. Dirac, P.A.M.: The Principles of Quantum Mechanics. Oxford University Press, Oxford (1999)

    Google Scholar 

  11. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  12. Wigner, E.P.: The problem of measurement. Am. J. Phys. 31, 6–15 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Feynman, R.P.: The Character of Physical Law. Penguin Books, Baltimore (2007)

    Google Scholar 

  14. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw Hill, New York (1960)

    Google Scholar 

  15. Gottfried, K., Yan, T.-M.: Quantum Mechanics. Springer, Germany (2003)

    MATH  Google Scholar 

  16. Greenstein, G., Zajonc, A.G.: The Quantum Challenge, 2nd edn. Jones and Bartlett, Boston (2006)

    Google Scholar 

  17. Heisenberg, W.: The Physical Principals of the Quantum Theory. Dover, New York (1949)

    Google Scholar 

  18. Heisenberg, W.: Physics and Philosophy: The Revolution in Modern Science. Prometheus Books, New York (1999)

    Google Scholar 

  19. Isham, C.J.: Lectures on Quantum Theory. Imperial College Press, London (1995)

    MATH  Google Scholar 

  20. Klyachko, A.A., Can, M.A., Binicioğlu, S., Shumovsky, A.S.: Simple test for hidden variables in spin-1 systems. Phys. Rev. Lett. 101, 020403 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  21. Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17 (1967)

    Google Scholar 

  22. Kurzyński, P., Ramanathan, R., Kaszlikowski, D.: Entropic test of quantum contextuality. Phys. Rev. Lett. 109, 020404 (2012)

    Article  ADS  Google Scholar 

  23. Lawden, D.F.: The Mathematical Principles of Quantum Mechanics. Dover, New york (2005)

    MATH  Google Scholar 

  24. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics. Addison-Wesley, Reading (1964)

    Google Scholar 

  25. Mackey, G.W.: Mathematical Foundations of Quantum Mechanics. Dover, New York (2004)

    Google Scholar 

  26. Major, F.G., Gheorghe, V.N., Werth, G.: Charged Particle Traps: Physics and Techniques of Charged Particle Field Confinement. Springer, Germany (2010)

    Google Scholar 

  27. Nielsen, M.A., Chang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  28. Muga, G.: Time in Quantum Mechanics. Springer, Berlin (2008)

    MATH  Google Scholar 

  29. Muller, H., Peter, A., Chew, S.: A precision measurement of the gravitational redshift by the interference of matter waves. Nature 463(3), 926–929 (1983)

    Article  ADS  Google Scholar 

  30. Newton, R.G.: The Truth of Science: Physical Theories and Reality. Harvard University Press, Cambridge (1997)

    Google Scholar 

  31. Healy, R.: The Philosophy of Quantum Mechanics. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  32. Ramanathan, R., Soeda, A.A., Kurzyński, P., Kaszlikowsk, D.: Generalized monogamy of contextual inequalities from the no-disturbance principle. Phys. Rev. Lett. 109, 050404 (2012)

    Article  ADS  Google Scholar 

  33. Schlosshauer, M.A.: Decoherence: and the Quantum-to-Classical Transition. Springer, Germany (2010)

    Google Scholar 

  34. Stapp, H.P.: The Copenhagen interpretation. Am. J. Phys. 40 (1963)

    Google Scholar 

  35. Streater, R.F.: Classical and quantum probability. J. Math. Phys. 41, 3556–3603 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1983)

    Google Scholar 

  37. Yu, S., Oh, C.H.: State-independent proof of Kochen-Specker theorem with 13 rays. Phys. Rev. Lett. 108, 030402 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baaquie, B.E. (2013). Conclusions. In: The Theoretical Foundations of Quantum Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6224-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6224-8_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6223-1

  • Online ISBN: 978-1-4614-6224-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics