Skip to main content

Hippo Signaling and Stem Cells

  • Chapter
  • First Online:
Book cover The Hippo Signaling Pathway and Cancer

Abstract

The normal growth and development of an organ is dependent on the precise balance of stem cell self-renewal and differentiation. Slightest aberrations in signals stem cells receive can cause growth abnormalities and cancer. Emerging data suggest that the highly conserved Hippo signaling pathway can directly regulate stem cell proliferation and maintenance to control organ size. Furthermore, deregulation of the pathway promotes cancer stem cell-like properties and leads to tumor formation. Together, these findings implicate that the Hippo pathway modulates the dynamic activity of stem cells in tissue repair, regeneration, and development. Here, we summarize the latest findings that establish the role of Hippo pathway in stem cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Depaepe V, et al. Ephrin signalling controls brain size by regulating apoptosis of neural progenitors. Nature. 2005;435:1244–50.

    Article  PubMed  CAS  Google Scholar 

  • Stanger BZ, Tanaka AJ, Melton DA. Organ size is limited by the number of embryonic progenitor cells in the pancreas but not the liver. Nature. 2007;445:886–91.

    Article  PubMed  CAS  Google Scholar 

  • Justice RW, Zilian O, Woods DF, Noll M, Bryant PJ. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev. 1995;9:534–46.

    Article  PubMed  CAS  Google Scholar 

  • Pan D. The Hippo signaling pathway in development and cancer. Dev Cell. 2010;19:491–505.

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol. 2011;13:877–83.

    Article  PubMed  CAS  Google Scholar 

  • Khokhlatchev A, et al. Identification of a novel Ras-regulated proapoptotic pathway. Curr Biol. 2002;12:253–65.

    Article  PubMed  CAS  Google Scholar 

  • Oh HJ, et al. Role of the tumor suppressor RASSF1A in Mst1-mediated apoptosis. Cancer Res. 2006;66:2562–9.

    Article  PubMed  CAS  Google Scholar 

  • Dong J, et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 2007;130:1120–33.

    Article  PubMed  CAS  Google Scholar 

  • Chan EH, et al. The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene. 2005;24:2076–86.

    Article  PubMed  CAS  Google Scholar 

  • Hirabayashi S, et al. Threonine 74 of MOB1 is a putative key phosphorylation site by MST2 to form the scaffold to activate nuclear Dbf2-related kinase 1. Oncogene. 2008;27:4281–92.

    Article  PubMed  CAS  Google Scholar 

  • Praskova M, Xia F, Avruch J. MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr Biol. 2008;18:311–21.

    Article  PubMed  CAS  Google Scholar 

  • Hao Y, Chun A, Cheung K, Rashidi B, Yang X. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem. 2008;283:5496–509.

    Article  PubMed  CAS  Google Scholar 

  • Oh H, Irvine KD. In vivo regulation of Yorkie phosphorylation and localization. Development. 2008;135:1081–8.

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21:2747–61.

    Article  PubMed  CAS  Google Scholar 

  • Lei QY, et al. TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the Hippo pathway. Mol Cell Biol. 2008;28:2426–36.

    Article  PubMed  CAS  Google Scholar 

  • Oka T, Mazack V, Sudol M. Mst2 and Lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP). J Biol Chem. 2008;283:27534–46.

    Article  PubMed  CAS  Google Scholar 

  • Kanai F, et al. TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J. 2000;19:6778–91.

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Totty NF, Irwin MS, Sudol M, Downward J. Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell. 2003;11:11–23.

    Article  PubMed  CAS  Google Scholar 

  • Mauviel A, Nallet-Staub F, Varelas X. Integrating developmental signals: a Hippo in the (path)way. Oncogene. 2012;31:1743–56.

    Article  PubMed  CAS  Google Scholar 

  • Sudol M, Harvey KF. Modularity in the Hippo signaling pathway. Trends Biochem Sci. 2010;35:627–33.

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 2008;22:1962–71.

    Article  PubMed  CAS  Google Scholar 

  • Schlegelmilch K, et al. Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell. 2011;144:782–95.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko KJ, DePamphilis ML. Regulation of gene expression at the beginning of mammalian development and the TEAD family of transcription factors. Dev Genet. 1998;22:43–55.

    Article  PubMed  CAS  Google Scholar 

  • Jacquemin P, et al. Differential expression of the TEF family of transcription factors in the murine placenta and during differentiation of primary human trophoblasts in vitro. Dev Dyn. 1998;212:423–36.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko KJ, Cullinan EB, Latham KE, DePamphilis ML. Transcription factor mTEAD-2 is selectively expressed at the beginning of zygotic gene expression in the mouse. Development. 1997;124:1963–73.

    PubMed  CAS  Google Scholar 

  • Hamaratoglu F, et al. The tumour-suppressor genes NF2/Merlin and expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol. 2006;8:27–36.

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, et al. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell. 2010;19:27–38.

    Article  PubMed  CAS  Google Scholar 

  • Camargo FD, et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol. 2007;17:2054–60.

    Article  PubMed  CAS  Google Scholar 

  • Avruch J, Zhou D, Fitamant J, Bardeesy N. Mst1/2 signalling to Yap: gatekeeper for liver size and tumour development. Br J Cancer. 2011;104:24–32.

    Article  PubMed  CAS  Google Scholar 

  • Liu-Chittenden Y, et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 2012;26:1300–5.

    Article  PubMed  CAS  Google Scholar 

  • Zhou D, et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell. 2009;16:425–38.

    Article  PubMed  CAS  Google Scholar 

  • Song H, et al. Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc Natl Acad Sci U S A. 2010;107:1431–6.

    Article  PubMed  CAS  Google Scholar 

  • Lee KP, et al. The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc Natl Acad Sci U S A. 2010;107:8248–53.

    Article  PubMed  CAS  Google Scholar 

  • Lu L, et al. Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc Natl Acad Sci U S A. 2010;107:1437–42.

    Article  PubMed  CAS  Google Scholar 

  • Benhamouche S, et al. Nf2/Merlin controls progenitor homeostasis and tumorigenesis in the liver. Genes Dev. 2010;24:1718–30.

    Article  PubMed  CAS  Google Scholar 

  • Zhou D, et al. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. Proc Natl Acad Sci U S A. 2011;108:E1312–20.

    Article  PubMed  CAS  Google Scholar 

  • Fre S, et al. Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine. Proc Natl Acad Sci U S A. 2009;106:6309–14.

    Article  PubMed  CAS  Google Scholar 

  • Varelas X, et al. The Hippo pathway regulates Wnt/beta-catenin signaling. Dev Cell. 2010a;18:579–91.

    Article  PubMed  CAS  Google Scholar 

  • Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–80.

    Article  PubMed  CAS  Google Scholar 

  • Nusse R. Wnt signaling in disease and in development. Cell Res. 2005;15:28–32.

    Article  PubMed  CAS  Google Scholar 

  • Imajo M, Miyatake K, Iimura A, Miyamoto A, Nishida E. A molecular mechanism that links Hippo signalling to the inhibition of Wnt/beta-catenin signalling. EMBO J. 2012;31:1109–22.

    Article  PubMed  CAS  Google Scholar 

  • Merkle FT, Alvarez-Buylla A. Neural stem cells in mammalian development. Curr Opin Cell Biol. 2006;18:704–9.

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Pfaff SL, Gage FH. YAP regulates neural progenitor cell number via the TEA domain transcription factor. Genes Dev. 2008;22:3320–34.

    Article  PubMed  CAS  Google Scholar 

  • Provias JP, Becker LE. Cellular and molecular pathology of medulloblastoma. J Neurooncol. 1996;29:35–43.

    Article  PubMed  CAS  Google Scholar 

  • Dahmane N, Ruiz i Altaba A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development. 1999;126:3089–100.

    PubMed  Google Scholar 

  • Raffel C, et al. Sporadic medulloblastomas contain PTCH mutations. Cancer Res. 1997;57:842–5.

    PubMed  CAS  Google Scholar 

  • Reifenberger J, et al. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res. 1998;58:1798–803.

    PubMed  CAS  Google Scholar 

  • Fernandez LA, et al. YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev. 2009;23:2729–41.

    Article  Google Scholar 

  • Li Y, Hibbs MA, Gard AL, Shylo NA, Yun K. Genome-wide analysis of N1ICD/RBPJ targets in vivo reveals direct transcriptional regulation of Wnt, SHH, and Hippo pathway effectors by Notch1. Stem Cells. 2012;30:741–52.

    Article  PubMed  Google Scholar 

  • Fuchs E. Scratching the surface of skin development. Nature. 2007;445:834–42.

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Pasolli HA, Fuchs E. Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin. Proc Natl Acad Sci U S A. 2011;108:2270–5.

    Article  PubMed  CAS  Google Scholar 

  • Lee JH et al. A crucial role of WW45 in developing epithelial tissues in the mouse. EMBO J. 2008;27.

    Google Scholar 

  • Silvis MR et al. alpha-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci Signal. 2011;4:ra33.

    Google Scholar 

  • Lien WH, Klezovitch O, Fernandez TE, Delrow J, Vasioukhin V. alphaE-catenin controls cerebral cortical size by regulating the hedgehog signaling pathway. Science. 2006a;311:1609–12.

    Article  PubMed  CAS  Google Scholar 

  • Lien WH, Klezovitch O, Vasioukhin V. Cadherin-catenin proteins in vertebrate development. Curr Opin Cell Biol. 2006b;18:499–506.

    Article  PubMed  CAS  Google Scholar 

  • Robinson BS, Huang J, Hong Y, Moberg KH. Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein Expanded. Curr Biol. 2010;20:582–90.

    Article  PubMed  CAS  Google Scholar 

  • Ling C, et al. The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to expanded. Proc Natl Acad Sci U S A. 2010;107:10532–7.

    Article  PubMed  CAS  Google Scholar 

  • Chen CL, et al. The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila. Proc Natl Acad Sci U S A. 2010;107:15810–5.

    Article  PubMed  CAS  Google Scholar 

  • Grzeschik NA, Parsons LM, Allott ML, Harvey KF, Richardson HE. Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathway through two distinct mechanisms. Curr Biol. 2010;20:573–81.

    Article  PubMed  CAS  Google Scholar 

  • Skouloudaki K, et al. Scribble participates in Hippo signaling and is required for normal zebrafish pronephros development. Proc Natl Acad Sci U S A. 2009;106:8579–84.

    Article  PubMed  CAS  Google Scholar 

  • Varelas X, et al. The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-beta-SMAD pathway. Dev Cell. 2010b;19:831–44.

    Article  PubMed  CAS  Google Scholar 

  • Doggett K, Grusche FA, Richardson HE, Brumby AM. Loss of the Drosophila cell polarity regulator Scribbled promotes epithelial tissue overgrowth and cooperation with oncogenic Ras-Raf through impaired Hippo pathway signaling. BMC Dev Biol. 2011;11:57.

    Article  PubMed  CAS  Google Scholar 

  • Kim NG, Koh E, Chen X, Gumbiner BM. E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci U S A. 2011;108:11930–5.

    Article  PubMed  CAS  Google Scholar 

  • Heallen T, et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011;332:458–61.

    Article  PubMed  CAS  Google Scholar 

  • Xin M et al. Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal. 2011;4:ra70.

    Google Scholar 

  • von Gise A, et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci U S A. 2012;109:2394–9.

    Article  Google Scholar 

  • Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev. 2006;20:3347–65.

    Article  PubMed  CAS  Google Scholar 

  • Matsui Y, et al. Lats2 is a negative regulator of myocyte size in the heart. Circ Res. 2008;103:1309–18.

    Article  PubMed  CAS  Google Scholar 

  • Watt KI, et al. Yap is a novel regulator of C2C12 myogenesis. Biochem Biophys Res Commun. 2010;393:619–24.

    Article  PubMed  CAS  Google Scholar 

  • Judson RN, Tremblay, Annie M, Knopp, Paul, White, Robert, Urcia, Roby, De Bari, Cosimo., Zammit, Peter S, Camargo, Fernando D, Wackerhage, Henning. The Hippo pathway member Yap plays a key role in influencing fate decisions in muscle satellite cells. J Cell Sci. 2012.

    Google Scholar 

  • Jeong H, et al. TAZ as a novel enhancer of MyoD-mediated myogenic differentiation. FASEB J. 2010;24:3310–20.

    Article  PubMed  CAS  Google Scholar 

  • Nishioka N, et al. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell. 2009;16:398–410.

    Article  PubMed  CAS  Google Scholar 

  • Biswas A, Hutchins R. Embryonic stem cells. Stem Cells Dev. 2007;16:213–22.

    Article  PubMed  CAS  Google Scholar 

  • Darr H, Benvenisty N. Human embryonic stem cells: the battle between self-renewal and differentiation. Regen Med. 2006;1:317–25.

    Article  PubMed  CAS  Google Scholar 

  • Xiao L, Yuan X, Sharkis SJ. Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells. 2006;24:1476–86.

    Article  PubMed  CAS  Google Scholar 

  • James D, Levine AJ, Besser D, Hemmati-Brivanlou A. TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development. 2005;132:1273–82.

    Article  PubMed  CAS  Google Scholar 

  • Vallier L, Alexander M, Pedersen RA. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci. 2005;118:4495–509.

    Article  PubMed  CAS  Google Scholar 

  • Varelas X, et al. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol. 2008;10:837–48.

    Article  PubMed  CAS  Google Scholar 

  • Evans M. Discovering pluripotency: 30 years of mouse embryonic stem cells. Nat Rev Mol Cell Biol. 2011;12:680–6.

    Article  PubMed  CAS  Google Scholar 

  • Chambers I, Smith A. Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene. 2004;23:7150–60.

    Article  PubMed  CAS  Google Scholar 

  • Ying QL, Nichols J, Chambers I, Smith A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell. 2003;115:281–92.

    Article  PubMed  CAS  Google Scholar 

  • Alarcon C, et al. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell. 2009;139:757–69.

    Article  PubMed  CAS  Google Scholar 

  • Tamm C, Bower N, Anneren C. Regulation of mouse embryonic stem cell self-renewal by a Yes-YAP-TEAD2 signaling pathway downstream of LIF. J Cell Sci. 124:1136–44.

    Google Scholar 

  • Lian I, et al. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 2010;24:1106–18.

    Article  PubMed  CAS  Google Scholar 

  • Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8:755–68.

    Article  PubMed  CAS  Google Scholar 

  • Pece S, et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell. 2010;140:62–73.

    Article  PubMed  CAS  Google Scholar 

  • Cordenonsi M, et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell. 2011;147:759–72.

    Article  PubMed  CAS  Google Scholar 

  • Bhat KP, et al. The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma. Genes Dev. 2011;25:2594–609.

    Article  PubMed  CAS  Google Scholar 

  • Jansson L, Larsson J. Normal hematopoietic stem cell function in mice with enforced expression of the Hippo signaling effector YAP1. PLoS One. 2012;7:e32013.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to those investigators whose work we could not cite due to limited space. We thank Annie M. Tremblay, Evan Barry, and Morvarid Mohseni for providing feedback and proofreading this manuscript. Fernando D. Camargo is a Pew Scholar and is supported by grants from the National Institutes of Health, the Stand Up to Cancer Foundation and the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando D. Camargo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shrestha, K., Camargo, F.D. (2013). Hippo Signaling and Stem Cells. In: Oren, M., Aylon, Y. (eds) The Hippo Signaling Pathway and Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6220-0_13

Download citation

Publish with us

Policies and ethics